Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

By Peterson, J.
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2021). From convolutional neural networks to models of higher-level cognition (and back again). Annals of the New York Academy of Sciences. (pdf)
DMRL
Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up psychology via Scientific Regret Minimization. Proceedings of the National Academy of Sciences. (pdf)
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2020). Capturing human categorization of natural images by combining deep networks and cognitive models. Nature Communications, 11(1), 1-14. (pdf)
P
S&C
Jha, A., Peterson, J. C., & Griffiths, T. L. (2020). Extracting low-dimensional psychological representations from convolutional neural networks. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Singh, P., Peterson, J. C., Battleday, R. M., & Griffiths, T. L. (2020). End-to-end deep prototype and exemplar models for predicting human behavior. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Grant, E., Peterson, J. C., & Griffiths, T. (2019). Learning deep taxonomic priors for concept learning from few positive examples. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
DMRL
Bourgin, D., Peterson, J. C., Reichman, D., Russell, S., & Griffiths, T. L. (2019). Cognitive model priors for predicting human decisions. Proceedings of the 36th International Conference on Machine Learning (ICML). (pdf)
RPM
DMRL
Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2019). Using machine learning to guide cognitive modeling: a case study in moral reasoning. Proceedings of the 41st Annual Conference of the Cognitive Science Society . (pdf)
P
S&C
Suchow, J. W., Peterson, J. C., & Griffiths, T. L. (2018). Learning a face space for experiments on human identity. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Evaluating vector-space models of analogy. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)

© 2021 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University