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Abstract

Determining the knowledge that guides human judgments is fundamental to understanding how

people reason, make decisions, and form predictions. We use an experimental procedure called

‘‘iterated learning,’’ in which the responses that people give on one trial are used to generate the data

they see on the next, to pinpoint the knowledge that informs people’s predictions about everyday

events (e.g., predicting the total box office gross of a movie from its current take). In particular, we

use this method to discriminate between two models of human judgments: a simple Bayesian model

(Griffiths & Tenenbaum, 2006) and a recently proposed alternative model that assumes people store

only a few instances of each type of event in memory (MinK; Mozer, Pashler, & Homaei, 2008).

Although testing these models using standard experimental procedures is difficult due to differences

in the number of free parameters and the need to make assumptions about the knowledge of individ-

ual learners, we show that the two models make very different predictions about the outcome of iter-

ated learning. The results of an experiment using this methodology provide a rich picture of how

much people know about the distributions of everyday quantities, and they are inconsistent with the

predictions of the MinK model. The results suggest that accurate predictions about everyday events

reflect relatively sophisticated knowledge on the part of individuals.
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1. Introduction

Suppose you call your phone company to resolve a perplexing charge for a call to Burkina

Faso on your bill. After 2 min on hold listening to insipid music, punctuated by assurances

that your call is important to the company, you wonder how much longer you will have to

hold. Or suppose you have been waiting for the person ahead of you to finish their tran-

saction with the bank teller for 10 min; will your total waiting time chew up your entire

lunch break? Daily life abounds with situations like these, in which we must predict the

future on the basis of a single observation. Notwithstanding the impoverished nature of the

data—the time already spent waiting—most people would hazard a guess about the ultimate

outcome. How accurate are those guesses and what processes determine them? Predictions

about the future necessarily involve prior knowledge, but what is the nature of that knowl-

edge? Is that knowledge being used optimally? How could we ever know unless we find a

good assay of prior knowledge?

In an initial exploration of these questions, Griffiths and Tenenbaum (2006) asked people

to predict outcomes (e.g., a person’s life span) from a single sample (e.g., a person’s age).

Griffiths and Tenenbaum suggested that people’s responses were consistent with Bayesian

inference using the appropriate prior distribution. For example, when predicting a person’s

likely total lifetime, responses were consistent with use of the appropriate Gaussian prior

(ignoring infant mortality, human life span is approximately normally distributed). Likewise,

when predicting the total gross box office intake of a movie from its performance to date,

people’s responses were consistent with a power-law prior (movie grosses in fact follow a

power-law distribution, with most movies making a small amount of money but some movies

making a fortune). This concordance between people’s responses and known statistical prop-

erties of the environment was observed for several other variables, including the rather

esoteric task of predicting the total length of the reign of an Egyptian Pharaoh. Griffiths and

Tenenbaum concluded that their data suggested ‘‘… a far closer correspondence between

optimal statistical inference and everyday cognition than suggested by previous research’’

(p. 771). This conclusion must be considered quite provocative and counter-intuitive in light

of the plethora of instances in which people’s predictions have been shown to be at variance

with optimal statistics (e.g., Tversky & Kahneman, 1983).

Indeed, Griffiths and Tenenbaum’s (2006) conclusions have not gone unchallenged. In a

recent paper, Mozer, Pashler, and Homaei (2008) revisited the method of Griffiths and

Tenenbaum and suggested that their data did not permit a strong conclusion because each

participant only provided a single guess about each variable under consideration. Hence, the

correspondence between Bayesian inferences using the correct prior probabilities and

people’s responses was only observed in the aggregate, after averaging across a large num-

ber of participants, raising the possibility that the result may have been an artifact of aggre-

gation (cf. Estes & Maddox, 2005). Mozer et al. (2008) explored this possibility and showed

that the results of Griffiths and Tenenbaum (2006) could be reproduced by a simple non-

Bayesian model, called MinK, that merely assumed that each person had access to no more

than a few relevant instances in memory; when aggregated across individuals, Mozer et al.

showed that this impoverished individual knowledge not only captured the aggregate
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responses observed by Griffiths and Tenenbaum but did so with greater precision than

the Bayesian model, suggesting that the results of Griffiths and Tenenbaum arose from the

‘‘the wisdom of crowds’’ (Surowiecki, 2004). However, Mozer et al. (2008) provided no

direct empirical test of the proposition implied by their model, namely that individuals

lack ‘‘wisdom.’’

This article seeks to pinpoint the knowledge underlying people’s performance in the

aggregate as well as at the individual level through an experiment that adjudicates between

the predictions of Griffiths and Tenenbaum’s (2006) Bayesian model and Mozer et al.’s

(2008) MinK model. In order to discriminate between the wisdom of crowds and that of indi-

viduals, we use a within-subject version of the prediction task in which people make repeated

judgments about a single quantity. In particular, we use a novel methodology known as iter-
ated learning (e.g., Griffiths & Kalish, 2007; Kalish, Griffiths, & Lewandowsky, 2007) for

which the two models make starkly contrasting predictions. In iterated learning, the input for

one learning episode is based on the response from a prior learning event. A prime example

is the transmission and evolution of language, which is characterized by speakers learning

their language from the data provided by other speakers who were once learners themselves

(e.g., Griffiths & Kalish, 2007; Kirby, 2001; Kirby, Dowman, & Griffiths, 2007; Smith,

Kirby, & Brighton, 2003; for a recent review, see Griffiths, Kalish, & Lewandowsky, 2008).

To foreshadow our principal conclusions, the experiment provides strong support for the

idea that people’s predictions are best described as a Bayesian inference based on the appro-

priate prior distribution. The data also refute the MinK model by challenging its key predic-

tion about how people should behave in an iterated version of the future-prediction task.

Our results also demonstrate how the iterated-learning method can be useful for testing

psychological models, magnifying what might be a small difference in predictions in a

single iteration of learning into a large difference after several iterations (see, e.g., Reali &

Griffiths, 2008).

The plan of the paper is as follows. We begin by presenting the prediction task used by

Griffiths and Tenenbaum (2006) and its critique by Mozer et al. (2008) in more detail. We

then summarize the formal and experimental work that identifies iterated learning as a valu-

able tool to reveal the knowledge underlying human inductive inference and present the

contrasting predictions of the two models. These analyses are followed by the experiment

that used an iterated version of the future-prediction task and that supported the predictions

of the Bayesian model and rejects those of MinK. We conclude that performance on the

future-prediction task more closely resembles what we would expect from knowledge of

the appropriate prior distribution than from reliance on a small, fixed set of samples from

that distribution. Our results thus highlight the wisdom of individuals, rather than just the

wisdom of crowds.

2. The future-prediction task: Two competing models

In the prediction task, the optimal Bayesian model for predicting the total duration or

extent of a quantity ttotal when probed with the observation t is:
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pðttotaljtÞ / pðtjttotalÞpðttotalÞ; ð1Þ

where p(ttotal) is the prior distribution, and p(t|ttotal) the likelihood of observing a particular

datum (Eq. 1 from Griffiths & Tenenbaum, 2006). This is equivalent to the more general

form of Bayes’ rule (see Eq. 2 below), with ttotal playing the role of the hypothesis, and t the

role of the data. Thus, the probability assigned to any possible value of ttotal (the posterior

distribution) depends on two factors: the prior distribution of possible values of ttotal and the

likelihood of encountering any particular time t under a given hypothesis about ttotal. In this

article, as in Griffiths and Tenenbaum (2006), the likelihood p(t|ttotal) is always assumed to

be uniformly distributed. The nature of the prior distribution, by contrast, differs with the

variables under consideration. For example, whereas movie grosses follow a power-law

distribution in the real world, life span is roughly normally distributed, and so on.

Griffiths and Tenenbaum (2006) showed that the median predictions across a large num-

ber of participants were in accord with this optimal Bayesian model—that is, the observed

median matched the median of the predicted posterior distribution. However, the data of

Griffiths and Tenenbaum were subject to a number of constraints. First, their study only pro-

vided limited snapshots of people’s posterior distribution, by recording p(ttotal|t) for a highly

sparse set of t values. Thus, although the results of Griffiths and Tenenbaum were consistent

with the assumption that people had knowledge of the appropriate actual prior, that ‘‘psy-

chological’’ prior remained unobserved.

Second, because each participant provided only a single estimate of ttotal for a given t,
Griffiths and Tenenbaum’s results did not address the process by which people generated

their responses. For example, the data were equally consistent with sampling from the pos-

terior distribution—people generating any possible ttotal according to its posterior probabil-

ity—and deterministic responding with, say, the median of the posterior—people providing

the same ‘‘best guess’’ in response to repeated polling with a constant t.
Expanding on this point, Mozer et al. (2008) provided an alternative account of the results

of Griffiths and Tenenbaum that sidestepped the Bayesian framework altogether. Specifi-

cally, Mozer et al. rejected the idea that individuals have access to veridical prior distribu-

tions and instead assumed that people can merely recall a small number (k) of relevant

instances (e.g., the age of one’s grandfather at his death) and respond with the smallest

recalled value—hence the name MinK. If the probe value, t, exceeds the value of all recalled

instances, people are assumed to respond with a proportional guess; that is, ttotal ¼
(1 + g) · t. Intriguingly, Mozer et al. could quantitatively account for the results of Griffiths

and Tenenbaum when k was assumed to be as small as two, leading Mozer et al. to reject

the need for a complex Bayesian model and suggesting instead that ‘‘individual minds may

reason from only a small number of instances…and the mechanisms…may be simple heu-

ristic algorithms.’’ (Mozer et al., p. 1145). It is only when people’s responses are considered

in the aggregate, by averaging across many samples of size k ¼ 2, that the predictions

approximate the prior distribution. In a nutshell, whereas Griffiths and Tenenbaum (2006)

suggested that people reason in an optimal manner when confronted with impoverished

data, Mozer et al. (2008) took a radically opposing view by assuming that people rely on the

rather modest ability to recall two instances.
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These conflicting viewpoints can be resolved empirically by a within-subject version of

the future-prediction task. At first glance, this might appear quite straightforward because

all that seems to be required is to present each participant with a suitably large number of

trials, whereupon the two competing models could be fit to each individual’s data and the

‘‘better’’ one is identified by standard model-selection techniques (e.g., Hélie, 2006;

Myung, 2000; Myung, Navarro, & Pitt, 2006). However, upon closer inspection, the matter

turns out to be considerably more complex—not because standard model-selection

techniques are limited but because of some idiosyncratic properties of MinK.

The core assumption of MinK is that each individual has access to only a few (usually

k ¼ 2) memorized instances that represent samples from the prior and are assumed to be

pre-experimentally acquired. It follows that MinK is committed to accounting for the results

of a single individual by relying on a single sample of k memorized instances. This commit-

ment throws up a number of difficulties because the predictions of MinK differ considerably

between different idiosyncratic samples of instances even when k is constant. For example,

a person who has memorized life spans of 14 and 36 years will make very different predic-

tions in response to t ¼ 50 from someone who recalls 70 and 89 years. Thus, notwithstand-

ing the fact that MinK was expressly designed to mimic the performance of individuals, it is

actually very difficult to fit to the data of individuals.

One way in which one might apply MinK to within-subject data involves repeated sam-

pling, such that the data produced by an individual are modeled by aggregating across a

large number of different samples, each of size k. This approach, however, defeats the

principal reason for the development of MinK because it opens the door to the aggregation

fallacy. Another possibility is to fit each individual on the basis of a single sample, but with

k additional free parameters that determine the value of each person’s memorized instances.

This approach, however, is at odds with MinK’s core postulate that the memorized instances

are samples from the appropriate prior. Treating each memorized instance as a free para-

meter would also increase the complexity of MinK even further, which is discomforting in

light of the fact that the competing Bayesian predictions are parameter free.

The challenges of testing MinK using data derived from individuals in a conventional

within-subject experiment suggest that we need to seek an alterative means of discriminat-

ing between MinK and the Bayesian model. In the remainder of the paper, we show that this

can be done by using an iterated-learning methodology, in which the predictions that people

produce in one trial affect the stimuli they see on future trials. In a within-subject iterated-

learning experiment, the predictions of MinK deviate starkly and inevitably from those of

the Bayesian model, allowing the models to be discriminated without requiring any para-

meter fitting or use of sophisticated model selection techniques.

3. Iterated learning reveals prior knowledge

In iterated learning, the input during each learning episode is based on the response

emitted at a previous episode. For example, during language evolution, a given learner is

producing utterances—which in turn constitute the stimuli for a subsequent generation of
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learners—using a grammar that was imputed from the input received from an earlier genera-

tion of learners. What are the long-term consequences of such iterated learning? Do learners

ultimately converge onto a predictable outcome?

There is no a priori reason to suspect that iterated learning would necessarily converge to

an equilibrium; instead, iteration might degenerate from structure into noise, it might des-

cend into random or unpredictable alternation from one solution to another, or people might

blend their prior knowledge with the to-be-learned data to form consistent ‘‘compromise’’

solutions. Indeed, if the ‘‘Chinese Whispers’’ party game (also known as ‘‘Telephone,’’

depending on the location of the party) is anything to go by, then one might expect iterated

learning to yield entirely unpredictable results.

It may thus come as a surprise that Griffiths and Kalish (2007) were capable of showing

by mathematical analysis that iterated learning will—under certain plausible circum-

stances—necessarily converge to an equilibrium reflecting the learners’ prior knowledge or

expectations, irrespective of the data provided to each generation. Griffiths and Kalish

(2007) analyzed iterated learning for a chain of Bayesian agents that process and transmit

information. Each agent receives data from the previous agent in the chain and, using

Bayes’ rule, seeks to infer from that data the hypothesis entertained by the previous agent.

This is done by computing the posterior probability of each hypothesis, p(h|d), by combin-

ing its prior probability before seeing any data, p(h), with the likelihood of the observed data

under that hypothesis, p(d|h), to give:

pðhjdÞ ¼ pðdjhÞpðhÞP
h2H pðdjhÞpðhÞ ; ð2Þ

where the denominator simply ensures that the resulting probabilities sum to one. The pos-

terior distribution can then be used to select the hypothesis entertained by the agent. For

example, each agent could sample a hypothesis from this distribution according to its proba-

bility, and then use the sampled hypothesis to generate the data provided to the next learner.

If we assume that the data for each generation are produced by sampling from the likeli-

hood function p(d|h), then the probability that the nth agent chooses hypothesis i given that

the previous agent chose hypothesis j is:

pðhðnÞ ¼ ijhðn�1Þ ¼ jÞ ¼
X

d

pðhðnÞ ¼ ijdÞpðdjhðn�1Þ ¼ jÞ; ð3Þ

where p(h(n)¼i|d) is the posterior probability obtained from Eq. 2. Eq. 3 describes the transi-

tion matrix of a Markov chain, with the hypothesis chosen by each agent depending only on

the choice of the previous agent. Griffiths and Kalish (2005, 2007) showed that the station-

ary (i.e., ultimately attained) distribution of this Markov chain is p(h); that is, the chain con-

verges onto the prior distribution assumed by the agents. The chain will converge to this

distribution irrespective of the nature of the data and hypotheses involved, provided some

simple conditions on the properties of the transition matrix are satisfied (e.g., Norris, 1997).

By implication, the probability that the last in a long line of learners chooses a particular

hypothesis is simply the prior probability of that hypothesis, regardless of the initial data

provided to learners.
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In support of the idea that iterated learning should converge to the prior, Kalish et al.

(2007) showed that when people learned a continuous function concept (e.g., the relation-

ship between driving speed and stopping distance), the responses of the last in a chain of

generations of learners conformed to people’s known preferences for linearly increasing

functional relationships. Crucially, the stimuli provided for learning at the outset proved

irrelevant in the long run: Chains of learners initialized with a range of functions, including

negative linear, nonlinear (quadratic), and random relationships between two variables, all

reliably converged to positive linear functions after just eight generations of iterated

learning.

Iterated learning is not confined to inter-generational transmission—that is, situations in

which one person provides data to another—but can also be observed within individuals

across learning episodes. For example, Griffiths, Christian, and Kalish (2008) used each par-

ticipant’s response on one categorization trial to create stimuli for the same person on later

trials. The experiment used category structures defined on three binary dimensions origi-

nally introduced by Shepard, Hovland, and Jenkins (1961). These structures reduce to six

basic types, with a robust known order of their relative difficulty of learning. Participants

were shown a subset of the members of a category (the data) and were asked to identify the

most likely structure from which these members had been drawn (the hypothesis). The

hypotheses selected in one block of testing were used to generate the data seen in the next

block. Notwithstanding the shift from inter-generational to intra-individual transmission,

convergence to people’s prior expectations was observed, and the structures known to be

the easiest to learn rapidly came to dominate people’s choice of hypotheses.

4. Iterated learning and the prediction task

The key point of contention between the original Bayesian analysis of Griffiths and

Tenenbaum (2006) and the MinK model proposed by Mozer et al. (2008) is the nature of the

knowledge that people use to make predictions. The fact that iterated learning can reveal the

prior knowledge that guides people’s inferences suggests that this methodology may be

useful in discriminating between these models. In particular, a within-subjects design, in

which convergence occurs across trials produced by each participant, would seem to be an

ideal tool to examine how people perform the future-prediction task used by Griffiths and

Tenenbaum (2006). In this section, we consider the predictions that the two models make

for how people should behave in such an experiment.

4.1. Iterated learning and the Bayesian model

The Bayesian model of the prediction task described in Eq. 1 quite naturally entails an

instantiation of the transition matrix defined in Eq. 3, which describes the iterated learning

of Bayesian agents. Specifically, in our study, people repeatedly provided a prediction for

ttotal in response to a value of t for a number of different quantities. The probe value of t was

sampled uniformly from the interval ð0; tðn�1Þtotal �, where t
ðn�1Þ
total was the person’s response on
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the previous trial involving that chain. The iterations across trials within an individual are

therefore summarized by:

Qij ¼ pðtðnÞtotal ¼ ijtðn�1Þtotal ¼ jÞ ¼
X

t

pðtðnÞtotal ¼ ijtÞpðtjtðn�1Þtotal ¼ jÞ; ð4Þ

which defines the transition matrix, Q ¼ (Qij), of the Markov chain that converges to the

prior distribution p(ttotal).

It follows that the Bayesian model of the prediction task proposed by Griffiths and

Tenenbaum (2006) makes clear predictions about the distributions onto which each indi-

vidual should converge across multiple iterated-learning trials. These predictions are illus-

trated in the top row of panels in Fig. 1, which show the actual prior distributions of some of

the variables considered by Griffiths and Tenenbaum (and in our experiment below). Owing

to the properties just discussed, those priors are also the distributions onto which people are

predicted to converge during iterated learning.

Although the Bayesian model expects the distributions in Fig. 1 to hold for each individ-

ual as well as in the aggregate, with the modest number of responses from each participant

Fig. 1. Actual prior distributions (top row) and stationary distributions observed in the experiment (bottom row)

for six of the variables considered in the experiment and by Griffiths and Tenenbaum (2006).
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that are typical of most experiments, we can gather more information from individual data

by examining the prediction functions each person produces. Prediction functions show

responses (ttotal) as a function of the probe values (t). The relationship between t and ttotal that

is expected under the Bayesian model depends on the nature of the prior distributions (see

Griffiths & Tenenbaum, 2006, for a derivation, and see Appendix A for a summary). The top

row of panels in Fig. 2 illustrate the prediction functions we should expect to see for different

prior distributions. According to the Bayesian model, the responses of each individual should

be characterized by the appropriate prediction function for the variable under consideration.

4.2. Iterated learning and MinK

The MinK model posits that upon presentation of the probe, t, the set of k recalled

instances is first pruned by discarding all instances whose values fall below t (because they

Fig. 2. Prediction functions for Bayesian model (top row) and MinK (bottom row) for different prior distributions.

For the Bayesian model, each prediction function shows the median of the posterior distribution on ttotal when

probed with t. For MinK, these are the prediction functions for 10 randomly chosen replications (each with an idio-

syncratic set of k ¼ 2 instances) obtained after iterated learning has converged, which always conform to the

smallest of k samples of ttotal drawn from the prior and span a range of values of t less than this smallest sample.
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are irrelevant to the decision). The minimum value of the remaining instances is reported as

ttotal. For example, if a person is asked to predict the age at death of a 50-year-old, then sup-

posing that person remembers the instances 40, 80, and 84, the response would be 80. When

t exceeds all retrieved instances (e.g., if t ¼ 85 for this example), people are presumed to

respond with a guess that is proportional to the probe value t. Specifically, the model’s pre-

diction then is a proportion g larger than t; that is, ttotal ¼ (1 + g) · t.
For the iterated-learning paradigm, MinK’s predictions diverge drastically from those of

the Bayesian model. In particular, MinK predicts that people converge onto a single constant

response that, once reached, is emitted ad infinitum. This is because in the iterated-learning

paradigm just presented, each t (bar the first one) is randomly chosen from the inter-

val ð0; tðn�1Þtotal �, where t
ðn�1Þ
total was the person’s previous response. It follows that if t

ðn�1Þ
total was

equal to or below the overall minimum of a person’s k instances (call that tmin), the next

value of t will necessarily never exceed that minimum and hence all subsequent responses

will be equal to tmin. Alternatively, if t
ðn�1Þ
total was greater than tmin (either because it was a

proportional guess or one of the other instances >tmin), then the next value of t may

still exceed tmin, but because of the random sampling process, it will necessarily be

closer to tmin than t
ðn�1Þ
total . This downward migration of each successive t will continue until a

t
ðn�1Þ
total � tmin occurs, at which point the chain will have converged onto the con-

stant response t
ðnÞ
total ¼ tmin. Notably, these convergence predictions are independent of g

because guessing is absent once a t falls below tmax (the person’s largest memorized

instance). The predictions of MinK thus depend only on k.

Illustrative aggregate convergence predictions of MinK are shown in Fig. 3 for various val-

ues of k. Each distribution represents the simulated distribution of the minima of 1,000 sam-

ples of k instances from the appropriate prior. The figure reveals several noteworthy features.

First, in all instances, the predicted distributions shift to the left and become more peaked as k
increases. Second, in some instances (movie grosses, poems, and reigns of Pharaohs), the pre-

dicted distributions converge onto single points near zero as k increases. Third, even with

k ¼ 2, the value preferred by Mozer et al. (2008), there is considerable deviation between

these predictions and those of the Bayesian model shown in Fig. 1, attesting to the empirical

differentiability of the two models with reasonable (i.e., published) parameter settings.

The differences between the two models are particularly striking when shown at the level

of individual prediction functions. Fig. 2 shows the prediction function for 10 randomly cho-

sen samples, each of size k ¼ 2, for movie grosses. In all cases, the first stimulus was t ¼
100, and all subsequent stimuli were sampled from a uniform distribution between zero and

the model’s immediately preceding response. The model was run for 20 iterated-learning

trials, the last 10 of which are shown in the figure. As expected from the preceding analysis,

MinK had converged onto a constant response (the minimum of the k instances) in each

instance after only 10 iterated-learning trials, and thus produces a constant prediction

function for all subsequent trials.

To confirm the generality of this convergence behavior, the model was run on 1,000 sam-

ples for each of the chains shown in Figs. 1 and 3 and for each of five different seed values

(used in the present experiment; see Table 2). The median slope of the prediction function

(across the 1,000 replications) for the last 10 of 20 iterated-learning trials was zero in all
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cases. The mean values were slightly greater than zero, reflecting the fact that very occa-

sionally the model had not converged after 10 iterated-learning trials. Table 1 shows those

mean values together with the proportion of total replications that were equal to zero (within

a narrow tolerance window). It is clear from the table that with one exception (for movie

grosses), MinK predicts that between 94% and 100% of participants should converge onto a

constant response after only 10 iterated-learning trials.

4.3. Differentiating the models

The preceding discussion has identified two testable predictions to differentiate between

the two models with an iterated-learning methodology. First, at an aggregate level, the pre-

dicted stationary distributions of responses differ between the Bayesian model (top panels

of Fig. 1) and MinK (Fig. 3). Second, at the level of individual subjects, the Bayesian model

predicts that people’s prediction function should have a slope greater than zero and should

Fig. 3. Predicted stationary (converged) distributions of responses obtained from MinK for three different

values of k (k ¼ 2, 5, and 10, in the top, center, and bottom row of panels, respectively) and for six of the chains

considered in the experiment and by Griffiths and Tenenbaum (2006).
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follow the appropriate forms shown in the top panels of Fig. 2, regardless of the number of

iterations of learning. MinK, by contrast, predicts that people’s prediction functions should

have zero slope after just 10 iterations of learning, and that across subsequent repeated trials

people should respond with a constant value, as shown in the bottom panels of Fig. 2. These

predictions are independent of MinK’s free parameter g and depend only on the number of

samples on which judgments are based, k.

These two distinguishing predictions allow us to test whether people’s judgments are

more consistent with the Bayesian model or MinK for different values of k. In particular, we

can compare MinK with k ¼ 2 (the value advocated by Mozer et al., 2008) against the

Bayesian model, allowing us to determine whether the wisdom of crowds is sufficient to

explain the results of Griffiths and Tenenbaum (2006).

5. Method

The experiment sought to determine: (a) if people converge onto a stationary distribution

during iterated learning, (b) whether the observed stationary distributions matched the actual

prior distributions in the environment, and (c) whether each person’s prediction functions

were best characterized by the Bayesian sampling model or by MinK. People were presented

with eight chains of trials, each of which involved 20 prediction trials that were linked in

the manner described by Eq. 4. Each chain was ‘‘seeded’’ with one of five probe values (t)
for the first trial. Our analyses focused on the convergence properties of the various chains

and on examination of the resulting stationary distributions.

5.1. Participants

The participants were 35 members of the campus communities at the University of

Western Australia (N ¼ 17) and the University of Louisiana (N ¼ 18) who participated

voluntarily in exchange for course credit (some Australian participants also received AU$5

reimbursement).

Table 1

Summary statistics for slopes of prediction functions predicted by MinK
after 10 iterated-learning trials. Each table entry summarizes 5,000 replica-

tions (1,000 for each of five different seed values)

Chain Median Mean Prop 0a

Movie grosses .00 .15 .77

Length of poems .00 .04 .97

Lifespan .00 .00 1.00

Reign of Pharaohs .00 .04 .94

Movie runtimes .00 .00 1.00

Cake baking time .00 .02 .99

Note: aProportion of 5,000 replications that were within .00001 of zero.
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5.2. Apparatus and stimuli

The experiment was controlled by a Windows-based PC that presented stimuli and

recorded responses using a MatLab program written with the aid of the Psychophysics

Toolbox (Brainard, 1997; Pelli, 1997).

The stimuli involved eight chains of 20 prediction trials. The chains involved the vari-

ables used by Griffiths and Tenenbaum (2006) whose actual prior distributions are known.

(The number of terms served by members of the U.S. House of Representatives was omitted

because this was unlikely to be common knowledge among the Australian participants.)

Table 2 shows the eight variables, the shapes of their actual prior distributions, and the five

possible seed values (histograms of these actual prior distributions are provided in the top

panel of Fig. 1). The seed values were the values of t used by Griffiths and Tenenbaum and

were selected to cover a wide range of the actual distributions (11th–99th percentile).

For each participant and each variable, the chain was seeded with one of the five values

at random. For all subsequent trials of that chain, the next value of t was drawn at random

from the interval ð0; tðn�1Þtotal �, where t
ðn�1Þ
total was the person’s previous response. This process

defined an iterated-learning chain of the form specified earlier, with the uniform sampling

of t corresponding to the assumption in the model that the likelihood p(t|ttotal) is uniform.

Trials from all chains were randomly interleaved without constraints to form the total

sequence of 160 trials.

5.3. Procedure

Each trial was initiated with the presentation of a statement and the probe value t. For

example, for the life span variable, a trial with t ¼ 39 would involve the statement: ‘‘Insur-

ance agencies seek to predict people’s life spans—their age at death—based upon demo-

graphic information. If you were assessing an insurance case for a 39-year-old man, how old

would you expect him to be at death?’’ The complete list of questions appears in Appendix B.

Table 2

Chains and their actual prior distributions and seeds used in the experiment, and the observed

number of trials to convergence

Chain Prior Seeds Trialsa

Movie gross Powerb 1 6 10 40 100 2

Length of poems Power 2 5 12 32 67 2

Life span Gaussian 18 39 61 83 96 2

Reign of Pharaohs Erlangc 1 2 7 11 23 1

Duration of marriages ? 1 3 7 11 23 1

Movie run times Gaussian 30 60 80 95 110 1

Cake baking time Irregular 10 20 35 50 70 3

Waiting times Power 1 3 7 11 23 4

Notes: aTrials to convergence.
bPower-law priors have the form pðttotalÞ / t�c

total for some c > 0.
cErlang priors have the form p(ttotal) � ttotal exp()ttotal/b) for some b > 0.
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People entered their response (ttotal) using the keyboard and the next trial commenced 1 s

later. The experimental trials were preceded by four practice trials involving another unique

set of variables (e.g., the time required for a puddle to dry if it stopped raining t hours ago).

6. Results

6.1. Convergence analysis

We first examined the convergence of the chains from the various seeds. Convergence

was defined as the point along the sequence of 20 trials within each chain at which responses

no longer differed between sequences originating with different seed values. Fig. 4 shows

an illustrative sequence of responses for all seed values for two chains (each data point is

based on the median across participants who received a given seed), with movie grosses in

the left panel and the length of poems on the right. For both chains, convergence appears to

occur fairly rapidly, within approximately five trials.

Statistical confirmation for the rapid convergence was provided by comparing

responses across seed values at each trial for each chain. Using a Kruskal–Wallis test with a

Bonferroni-adjusted a ¼ .0025 (to maintain a level of significance of .05 across trials for

Fig. 4. Illustrative sequence of responses across trials for two chains. The left panel shows responses (median

ttotal) for movie grosses, and the right panel for length of poems. Within each panel, the five parameters represent

the different seed values, with the size of plotting symbols proportional to the magnitude of the seed. Exact seed

values for each chain are shown in the legend.

982 S. Lewandowsky, T. L. Griffiths, M. L. Kalish ⁄ Cognitive Science 33 (2009)



each chain), the number of trials to convergence (i.e., the first trial to yield a nonsignificant

value of v2) was found to range from 1 to 4 (see Table 2).

A general result in iterated learning is that the second eigenvalue of the transition matrix

in Eq. 4, k2, reveals the rate at which the chain converges, with higher values of k2 associ-

ated with slower convergence (see Griffiths & Kalish, 2005, 2007, for details). In confirma-

tion, the observed correlation between the number of trials to convergence and the second

eigenvalue (k2) of the transition matrix Q computed using the actual prior distributions of

ttotal was in line with the expectations of the Bayesian model.

6.2. Stationary distributions

The aggregate stationary distributions, obtained by considering responses from all

participants during the last 10 trials of each chain, are shown in the bottom row of panels in

Fig. 1. Note that waiting time is omitted from this and all further analyses because the actual

distribution of that variable is unknown in the context of the particular question asked of

participants. Likewise, we did not consider the duration of marriages because their

actual attributes differ widely between Australia and the United States, thus preventing a

meaningful analysis of our overall sample of participants.

Visual comparison of the data (bottom panels in Fig. 1) and the actual priors (top pan-

els) suggests that people’s responses: (a) differed widely between the different chains

and (b) often mirrored the actual distributions within each chain, as predicted by the

Bayesian model, but (c) deviated considerably from the predictions of MinK in at least

some instances. We now present a quantitative evaluation of the performance of the two

models.

6.2.1. Stationary distributions and predictions of the Bayesian model
The match between people’s responses and the actual distributions is further illustrated in

Fig. 5, which shows quantile–quantile (Q–Q) plots of the actual and stationary distributions.

When two distributions are identical, all points in a Q–Q plot will fall along the diagonal. If

the points fall on a straight line but differ in intercept (or slope) from the diagonal, the distri-

butions are identical in shape but differ in location (or spread, respectively). It follows that

the observed mismatch between stationary and actual distributions in some cases reflects

miscalibration of the spread of people’s distributions (e.g., for Pharaohs and movie grosses),

whereas other cases hint at systematic deviations between the distributions’ shape (e.g.,

movie run times and cake baking times).

To put these discrepancies into a proper context, people’s stationary distributions were

next compared to the predictions of the Bayesian model when applied to the particular

sequence of trials shown to participants. In this model, as in the analysis of iterated learning

presented above, we assumed that participants sampled a value of ttotal from the posterior

distribution. That is, for each value of t presented to participants in the experiment, we

obtained a predicted distribution of p(ttotal|t) based on the actual distributions, p(ttotal), as

described by Eq. 1. Those predictions, in turn, were summed across trials and participants to

yield aggregate posterior distributions. The result is a distribution that takes into account the
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fact that we are only observing a relatively modest sample of responses. The Q–Q plots of

these predicted and stationary distributions are shown in Fig. 6.

The Bayesian model clearly provides a good account of people’s stationary distributions,

as confirmed by the r2 values (.99, .98, .95, .99, .79, and .89, for movie grosses, poems, life

span, Pharaohs, movie run times and cakes, respectively, M ¼ .93; see Table 3 for further

summary statistics). Notably, the discrepancy between distributions for the length of poems

observed in Fig. 5 is nearly absent in Fig. 6, suggesting that the original deviation was pri-

marily due to the particular selection of stimuli shown to participants. Note that the two sets

of Q–Q plots in the figures are conceptually identical; the only difference is that Fig. 6 con-

verts the actual prior distributions into optimal Bayesian predictions based on the particular

sequence of stimuli shown to participants and corrects for distortions resulting from approx-

imating the stationary distribution by a small sample—the fact that this model fits well with-

out any free parameters suggests that people: (a) have knowledge of the appropriate actual

Fig. 5. Quantile–quantile (Q–Q) plots relating the observed stationary distributions to the actual prior distribu-

tions. Quantiles are from the 2nd to 98th percentile in 5% increments. A perfect overlap between the two distri-

butions would correspond to all data points falling along the diagonal in each panel. Conversely, if the two

distributions differed in location (mean) or spread (variance), the Q–Q plot would deviate from the diagonal in

intercept or slope, respectively. Nonlinear deviations from the diagonal reveal more subtle differences in shape

between the two distributions.
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distributions, (b) generate predictions by combining this prior knowledge or expectations

with the information provided by the probe stimuli in an optimal manner, and (c) sample

their responses from the resulting posterior distribution.

Fig. 6. Quantile–quantile plots relating the observed stationary distributions to the distributions predicted by the

Bayesian model (see text for details). Quantiles are from the second to 98th percentile in 5% increments. A perfect

overlap between the two distributions would correspond to all data points falling along the diagonal in each panel.

Table 3

Comparison of the observed stationary distributions and model predictions

MinK

Chain Bayes k ¼ 2 k ¼ 5 k ¼ 10

Movie gross 34.59 125.15 132.76 134.16

Length of poems 3.56 2.86 12.76 15.56

Life span 7.42 6.43 16.81 26.11

Reign of Pharaohs 3.33 16.85 24.01 26.21

Movie runtimes 10.74 18.55 28.07 31.73

Cake baking time 6.97 10.92 22.48 28.60

Mean 11.10 30.13 39.48 43.73

Note: All table entries are RMSDs that summarize the deviation of the predicted

quantiles from the diagonal in Figs. 6 and 7.
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6.2.2. Stationary distributions and predictions of MinK
Fig. 7 compares the observed stationary distributions to the predictions of MinK in a fur-

ther set of Q–Q plots. Each panel in the figure contains three parameters that correspond to

separate Q–Q plots for three values of k (viz., 2, 5, and 10). The figure thus plots the quan-

tiles of the predicted distributions shown at the outset (Fig. 3) against the data.

The figure reveals that in the vast majority of cases, MinK was incapable of capturing

people’s convergence behavior. Only when k ¼ 2 did the model succeed in predicting peo-

ple’s performance, and then only for poems and life spans. In all other cases, the model’s

predictions deviated considerably from the data. Table 3 provides statistical confirmation of

the obvious pattern in the Q–Q plots and additionally provides a comparison with the perfor-

mance of the Bayesian model. The entries in the table are the root mean-squared deviations

(RMSDs) between the diagonal and the points in each Q–Q plot, which provide an indica-

tion of the extent of deviation from identity of the two distributions. The table confirms

our principal conclusion: Whereas the Bayesian model captured people’s behavior in the

iterated-learning variant of the prediction task without any free parameters, MinK was inca-

pable of doing so in all but a limited number of cases despite the aid of a parameter.

Fig. 7. Quantile–quantile plots relating the observed stationary distributions to the distributions predicted by

MinK for three values of k (see text for details). Quantiles are from the 2nd to 98th percentile in 5% increments

and the values of k are shown in the legend.
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6.3. Individual performance

Fig. 8 shows representative prediction functions for two participants (one in each row of

panels). In each panel, the data are shown by large plotting symbols, with the last 10 trials

identified by black squares. The predictions of the Bayesian model are represented by thick

solid lines (these are the posterior medians shown in Fig. 2). For the reasons noted at the

outset, MinK cannot be fit to the results from individual subjects and hence its predictions

cannot be shown in the same figures, although we note that MinK expects all prediction

functions to be completely flat after convergence to the minimum of the set of k samples, as

illustrated in the bottom panel of Fig. 2.

It is clear from the figure that MinK’s predictions were at odds with the behavior of these

particular subjects. In all instances, subjects’ predictions—even for the last 10 (postconver-

gence) trials—deviate considerably from the constant responses expected by MinK.

Lest one think that those subjects might not be representative of the sample as a whole,

we fit a linear regression to responses from the last 10 trials (with t and ttotal as independent

Fig. 8. Representative prediction functions for two participants (each row of panels corresponds to one partici-

pant). Data are shown by large plotting symbols and the last 10 trials are identified by black squares. Each panel

also shows the predictions of the Bayesian model (thick solid line).
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and dependent variables, respectively) for each chain and for each of the 35 participants sep-

arately. The results of that analysis of each individual are shown in Table 4. For all chains,

the mean slope across subjects was significantly greater than zero, attesting to the fact that

people did not converge onto a constant response as predicted by MinK.

When interpreting the table, it must be borne in mind that the test is very conservative:

Under a Bayesian model, for variables with a Gaussian prior, people’s responses are expected

to be constant up to a point that corresponds to the mean of the distribution; it is only for

values of t beyond that point that an upturn is expected; see top panels in Fig. 2. The fact

that the prediction functions for the two Gaussian variables (life span and movie runtimes)

nonetheless exhibit mean slopes that are significantly greater than zero attests to the power of

the analysis reported in Table 4 and to the consistency of behavior across subjects.

One might object that the mean predictions of MinK were close to, but not equal to zero,

whereas the observed slopes were tested against the null hypothesis of zero. This objection

can be evaluated by considering the two columns in Table 4 that show the 95% confidence

bounds around the mean slope estimate. None of those confidence intervals spans the pre-

dicted mean slope of MinK in Table 1. Further confirmation of the consistency of the effect

across subjects is provided in the final column of the table, which shows the number of sub-

jects (out of 35) whose slopes were equal to or below zero. It is apparent that with the excep-

tion of the two Gaussian variables (for the reasons just noted), very few participants’ slopes

were £0.

Finally, Fig. 9 presents histograms of the distribution of individual postconvergence slope

estimates for the six chains. In confirmation of the data in the table, the vast majority of

subjects exhibited positive slopes of at least moderate magnitude. There are two exceptions

to this pattern, both involving the Gaussian variables (life span and movie run times), for

which slopes may differ only slightly from zero even under a Bayesian model for the

reasons just noted.

We conclude that even when the data are considered at an individual level, there is clear

evidence that people converged onto a stationary behavior very different from that predicted

Table 4

Summary statistics for linear regressions that predict the last 10 responses (ttotal) on the basis of the last 10

stimuli (t) for each subject and chain separately

Chain Intercepta Slopea One-sample tb p CIclower CIupper

N
(slope £0)d

Movie gross 43.71 .86 11.16 <.0001 .71 1.02 1

Length of poems 14.11 .65 8.07 <.0001 .49 .81 3

Life span 65.74 .22 3.73 <.001 .10 .35 9

Reign of Pharaohs 16.29 .82 6.39 <.0001 .56 1.08 3

Movie run times 104.90 .13 3.46 <.001 .05 .21 16

Cake baking time 41.05 .22 5.12 <.0001 .13 .31 5

Notes: aAverage across subjects of individual estimates.
bTested against the hypothesis that the mean slope is equal to 0, d.f. ¼ 34.
cLower and upper bounds of 95% confidence interval on mean slope.
dNumber of participants whose slope was £0.
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by MinK. In confirmation of recent related reports (e.g., Vul & Pashler, 2008), people in our

study individually exhibited considerable wisdom.

7. Discussion

The experiment and modeling permit a number of conclusions. First, for all chains,

people’s responses converged onto a stationary distribution as predicted by the iterated-

learning model. Second, the individual prediction functions conformed more closely to the

shape expected by the Bayesian model than to that predicted by MinK, suggesting that the

conformity with the optimal Bayesian predictions reported by Griffiths and Tenenbaum

(2006) was not merely a result of aggregating across participants as had been suggested by

Mozer et al. (2008). Third, the predictions of MinK were clearly disconfirmed both at the

aggregate and individual levels.

Fig. 9. Distribution of postconvergence slope estimates across participants for all six chains. MinK predicts

slopes to be equal to zero. Note that variables with a Gaussian distribution (life span and run times) are charac-

terized by small slopes even under a Bayesian model; see text for details.
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These conclusions have ramifications for a number of theoretical issues, which we

explore further in the remainder of this article. We start by summarizing how these results

illuminate people’s behavior in the future-prediction task. We then turn to how they contrib-

ute to our understanding of iterated learning more broadly. Finally, we discuss how MinK
falls short as a plausible alternative to a Bayesian model of how people form predictions,

and we consider the implications of our results for other models of cognition that assume

people rely only on a sparse set of instances stored in memory.

7.1. The future-prediction task

Our results go beyond related precedents (e.g., Griffiths & Tenenbaum, 2006) in several

important ways. At the outset, we asked two questions about the specifics of how people

make predictions: First, whether people really do use the appropriate actual prior in each

domain and, second, whether individuals have extensive knowledge of this distribution, or

whether the appearance that this is the case was merely a consequence of aggregating their

responses.

Our study resolved these questions. The fact that iterated learning converged onto distri-

butions that closely matched the actual distributions associated with everyday quantities

supports the claim that these are the distributions underlying people’s predictions. More-

over, using a within-subject variant of iterated learning allowed us to confirm that the pre-

diction functions produced by individual participants conformed to those expected from an

optimal Bayesian agent using the appropriate actual prior. Our conclusions thus mirror—and

considerably extend—those recently reported by Vul and Pashler (2008), who investigated

the ‘‘crowd within’’ (p. 645) and likewise concluded that ‘‘…responses made by a subject

are sampled from an internal probability distribution, rather than deterministically

selected…’’ (p. 647).

Our results thus bear out the basic conclusions of Griffiths and Tenenbaum (2006) regard-

ing the optimality of human predictions for everyday events. In addition, our study provided

a more complete picture of what people are doing when asked to form a prediction. The

analysis of iterated learning presented by Griffiths and Kalish (2007) requires that Bayesian

agents select hypotheses with a probability that is proportional to their posterior probability

in order to guarantee convergence to the prior. The fact that we see convergence to the prior

in our experiment suggests that people are performing the task in a way that is consistent

with producing samples from the appropriate posterior distribution—that is, people produce

responses that match their expected probabilities.

Probability matching is commonly observed in decision-making tasks (see Vulkan, 2000,

for a review) and provides an explanation for how aggregating of responses nonetheless pre-

serves key properties of people’s predictions: If each prediction is a sample from a common

posterior distribution, then a set of predictions from different people will approximate that

distribution. Thus, the close correspondence between the posterior median and the median

of people’s predictions observed by Griffiths and Tenenbaum was not an artifact of aver-

aging but the result of a deeper correspondence between the posterior distribution and the

distribution of people’s predictions.
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We therefore conclude that people seem to: (a) use the correct prior and (b) sample from

the posterior distribution. This conclusion must be qualified by the fact that neither (a) nor

(b) can be independently observed: We can only infer the prior and the response process

from people’s judgments, and the interdependence of these two factors makes them uniden-

tifiable. Nonetheless, the fact that people’s stationary responses resemble the actual priors

implies that whatever people do is equivalent to use of the correct prior and sampling from

the posterior.

7.2. Iterated learning

The correspondence between the stationary distributions produced by iterated learning

and the actual distributions provides some of the most compelling evidence to date that iter-

ated learning converges to the prior expectations of human learners. Previous experiments

(Griffiths, Christian, & Kalish, 2008; Kalish et al., 2007) have relied upon established but

not immediately related results, such as the relative difficulty of learning functions and cate-

gories, in order to test the prediction that iterated learning should converge to the prior. In

our study, by contrast, we have an objective indication of what the priors of human learners

should be (that is, we have access to the actual distributions of the quantities in question),

and we can compare those actual priors directly to the outcome of iterated learning.

The present experiment goes beyond previous research on iterated learning in several

additional ways. Unlike Kalish et al. (2007), the experiment involved no supervised learn-

ing. Rather, people simply made predictions without any feedback and on the basis of

fairly impoverished information, thus performing a generalization task more similar to that

used by Griffiths, Christian, and Kalish (2008). However, unlike the method used by Grif-

fiths, Christian, and Kalish, people were not restricted to a small discrete hypothesis space:

They were allowed to enter integer values from an unbounded range as responses. By impli-

cation, our stationary distributions were defined over the set of all nonnegative integers

rather than a small number of hypotheses. This combination of a naturalistic task and a rich

hypothesis space resulted in a far more detailed picture of the knowledge that people were

bringing to bear than previous studies.

The use of multiple interleaved chains also provided an important control for an alterna-

tive explanation for the outcome of iterated learning. In previous tests of the prediction that

iterated learning should converge onto people’s prior expectations, the prior probabilities of

these hypotheses were inferred based on the ease with which they were learned. The hypoth-

esis most readily learned (e.g., positive linear function concepts; Kalish et al., 2007) was

taken to represent people’s prior expectation. This analysis is open to the objection that the

change in people’s response patterns over time could reflect fatigue or other factors that lead

people to favor the ‘‘easier’’ hypotheses. The present results indicate that this is not the

case: The fact that each everyday quantity has a unique actual distribution and that people

simultaneously converged to these quite disparate distributions in different chains indicates

that people were not simply drifting toward some ‘‘easiest’’ hypothesis due to becoming

fatigued. If fatigue were the explanation, we would expect to see similar stationary distribu-

tions across all chains—a result very different from that seen in our experiment.
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Finally, our study represents the first instance in which iterated learning provided an

opportunity to differentiate between two competing models that would otherwise have been

difficult to test. The basic effect of iterated learning is to magnify the processes that influ-

ence people’s judgments, with each iteration providing another opportunity for these pro-

cesses to have an effect. At the behavioral level, this magnification property of iterated

learning has been examined by Reali and Griffiths (2008). The same kind of magnification

occurs with the predictions of models, implying that models that might be difficult to distin-

guish after only a single iteration can make quite different predictions after several itera-

tions. We anticipate that this property of iterated learning will make it a valuable tool for

testing other psychological theories, by exaggerating subtle differences in their predictions

that could not otherwise be empirically differentiated.

7.3. Implications for MinK and other sparse instance models

Our data and modeling have fairly clear—albeit negative—implications for MinK. One

of the model’s basic predictions, namely the convergence onto a constant response during

iterated learning, found no support in our data. We now briefly consider how the model per-

formed well in the analysis of the original data from Griffiths and Tenenbaum (2006) and

yet so poorly in the context of our experiment, and then discuss the implications of our

results for other psychological models based on storing a sparse set of instances in memory.

One of the key factors in the success of MinK in modeling the results of Griffiths and

Tenenbaum (2006) was aggregation. Because each participant in the original experiment

contributed only one response in each prediction domain, any mechanism that produced a

reasonable approximation to a single sample from the posterior distribution would be capa-

ble of mimicking the Bayesian model. This was part of the point raised by Mozer et al.

(2008), who then used MinK to demonstrate that a relatively simple mechanism (requiring

little knowledge on the part of each participant) could produce equivalent results. However,

without aggregation, the prediction functions of MinK for any single set of samples look

quite unlike the kind of prediction functions produced by the Bayesian model, being piece-

wise linear with sharp discontinuities at the location of each sample from the prior. In a

within-subject experiment, where multiple predictions are obtained for each domain from

each participant, the difference between these models becomes more apparent. Visual

inspection of the prediction functions shown in Fig. 8 shows that they do not seem to display

the kind of discontinuities that we would expect from MinK. The iterated-learning method-

ology exaggerates the way in which the models differ in their predictions for individual sub-

jects even further, resulting in the dramatic differences documented at the outset.

Another factor that allowed MinK to perform well in fitting the aggregate data was the

use of a linear ‘‘guessing’’ parameter, with predictions for values that are above the largest

stored sample being (1 + g) · t. For all three of the kinds of priors explored by Griffiths and

Tenenbaum (2006), the predictions produced by the Bayesian model converge to a linear

function as t becomes large. For power-law and Erlang priors, the posterior median is

always a linear function of t (with slope between 1 and 2 for power-law and 1 for Erlang).

For Gaussian priors, the posterior median approaches a linear function with slope 1 once
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t becomes larger than the mean of ttotal. Use of a linear guessing function with g as a free

parameter thus provides an opportunity to produce predictions that match different classes

of priors, with an extra degree of freedom that the Bayesian model lacked. Producing a good

fit to predictions resulting from a power-law distribution should thus come as little surprise,

and the quality of the approximation for Gaussian and Erlang distributions would depend on

the range of values of t that are investigated, with worse performance for more extreme val-

ues. While Mozer et al. (2008) used a single value of g to fit all domains, they noted that this

resulted in a very poor fit for the Gaussian-distributed life span data and advocated using a

different guessing parameter in this case. Knowing what values of g are reasonable in a

given domain is exactly the kind of knowledge that is necessary to make good Bayesian

predictions and reflects the kind of sensitivity to environmental statistics that Griffiths and

Tenenbaum (2006) considered notable.

One unusual property of the MinK model is that the more knowledge a person has, the

less plausible his or her responses become. That is, as k increases, the minimum instance

will necessarily get closer to the probed value (t). In the extreme case, if people have perfect

knowledge of the appropriate prior distribution (so k ¼ ¥), the model’s predicted response

will always be ttotal ¼ t, thus generating prediction functions that fall along the principal

diagonal for all variables irrespective of their actual distribution. While many heuristics

work well with moderate amounts of data and less well when more data are available (e.g.,

Goldstein & Gigerenzer, 2002), this property appears counter-intuitive, especially when we

think of heuristics as approximate solutions to challenging problems. In the present case, the

scaling of the model’s behavior with sample size is particularly awkward because of MinK’s

reliance on the minimum of a sample. Unlike other quantities that could be estimated from a

sample, such as the mean and median, the expected minimum of a sample is always going

to change (viz., decrease) as sample size increases (e.g., Gumbel, 1958). By implication,

MinK’s behavior is necessarily very sensitive to sample size and, as we have just shown, its

limiting behavior (k ¼ ¥) is quite odd.

In support of this point, when Mozer et al. (2008) considered alternatives to MinK that

embodied similar principles but asymptotically approached Bayesian inference with the cor-

rect prior as k became large, they found that the value of k had less effect on the fit of the

models. Even for these models, we might expect better performance for smaller values of k
because this is the range in which the free parameter g has the greatest effect. However,

these results illustrate that the key property necessary for matching the aggregate data is pro-

ducing predictions similar to a sample from the posterior distribution—something that MinK
is more likely to do when k is small.

One might object to our critique of Mozer et al. (2008) by pointing out that MinK might

best be considered an illustrative toy model whose sole purpose was to provide a quick alter-

native to the assumptions made by Griffiths and Tenenbaum (2006). In consequence, its ref-

utation may have little bearing on the ongoing debate as to whether people are capable of

optimal use of Bayesian priors (as strongly suggested by our data) or whether their perfor-

mance is better described by some other heuristic model that shares with MinK the idea of a

sparse set of instances but none of its other architectural commitments. In response, we note

that our data challenge a whole class of ‘‘sparse instance’’ models that could be used to
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explain people’s predictions. Any model in which a small, fixed set of instances is used to

form predictions is going to produce stereotyped behavior in an iterated-learning setting.

For example, a RandK model, in which participants choose at random between all stored

instances greater than t would produce prediction functions that assigned probabilities to

only a constant set of values, corresponding to the different stored instances. Likewise, a

MeanK model, averaging all exemplars greater than t, would converge to a constant in the

same way as MinK. We believe that the match between the human stationary distributions

and the priors, together with the nonconstant stationary distributions produced by our par-

ticipants, severely limit the application of ‘‘sparse instance’’ explanations in this context.

Importantly, there is one class of ‘‘sparse instance’’ models that is not compromised by

our results and that seems plausible as a heuristic account of how people might be solving

the problem. Specifically, our results are consistent with any model in which responses rely

on a new sample from the Bayesian posterior distribution on each trial. One such model

would postulate that people have a relatively large reservoir of stored instances for each dis-

tribution, but they retrieve only a small number of these instances on each trial. If people

then weight those instances of ttotal that are greater than t by 1/ttotal and sample an instance

with probability proportional to these weights, the sample will approximate a draw from the

posterior distribution. This kind of sparse instance model implements a Monte Carlo approx-

imation to the posterior known as importance sampling (for details, see Shi, Feldman, &

Griffiths, 2008) and would be indistinguishable from the full Bayesian model in our experi-

ment, provided the reservoir of stored instances is reasonably large.

The idea that people represent the world using a small number of samples from their

environment is one that is common in psychological process models, with exemplar models

having been used to explain human category learning (Medin & Schaffer, 1978; Nosofsky,

1986), function learning (DeLosh, Busemeyer, & McDaniel, 1997), probabilistic reasoning

(Juslin & Persson, 2002), and social judgment (Smith & Zarate, 1992). The success of iter-

ated learning in distinguishing between MinK and a model assuming more abstract statisti-

cal knowledge in the context of predicting the future suggests that a similar approach might

productively be used to investigate the adequacy of exemplar models in these other contexts.

We view this as an important direction for future work, given the prominent role that exem-

plar models play throughout cognitive psychology.

8. Conclusions

Taken together with our previous experiments (Griffiths, Christian, & Kalish, 2008;

Kalish et al., 2007), the present results provide strong support for the conclusion that iterated

learning converges to an equilibrium that reflects people’s knowledge or expectations about

a task. In this particular instance, the data also show that people optimally predict future

events on the basis of impoverished information, as suggested by Griffiths and Tenenbaum

(2006). A similar method may prove valuable in evaluating other Bayesian models, provid-

ing an independent source of information about the prior distributions that people appear to

use which can be compared with the assumptions embodied in the model. By the same
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token, use of an iterated-learning methodology allowed us to refute a competing model of

the future-prediction task, namely the MinK model proposed by Mozer et al. (2008). The

methodology is also likely to be valuable in exploring the predictions of other models based

on the idea that people store a sparse sample of instances in memory.

Having established that iterated learning can reliably uncover people’s prior expectations,

we can now use this paradigm as a tool to reveal people’s knowledge in situations in which

it might not be readily observable by other means. In the context of judgment and decision

making, one might use iterated learning to examine people’s knowledge of distributions of

economic indicators such as wages, wealth, or home ownership. More generally, we antici-

pate that the method will prove valuable in assessing the constraints that guide human learn-

ing in contexts where the nature of such constraints remains controversial, such as language

acquisition, causal induction, and category learning.
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Appendix A: Mathematical definitions of distributions and corresponding prediction
functions

The Gaussian distribution is the familiar normal distribution, with:

pðttotalÞ / expð�ðttotal � lÞ2=2r2Þ; ðA1Þ

where l and r are the mean and standard deviation, respectively. This distribution produces

values of ttotal centered around l, with the rate at which they fall off on either side being

exponential but determined by r.
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The power-law distribution has:

pðttotalÞ / t�c
total; ðA2Þ

where c is a parameter determining the rate at which p(ttotal) decreases as ttotal becomes

large. The probability of observing a value of ttotal decreases monotonically with ttotal, but

more slowly than other (specifically, exponential-tailed) distributions. As a consequence, it

is possible to see extreme values of ttotal relatively often. This property leads to the distribu-

tion being described as having ‘‘heavy tails.’’

The Erlang distribution is a one-parameter variant of the Gamma distribution, with

pðttotalÞ / expð�ttotal=bÞ; ðA3Þ

where b is a parameter of the distribution determining its mean and variance. The probabil-

ity of ttotal rises to a peak (with location determined by b) before falling off exponentially at

a rate determined by b.

These three distributions result in different predictions when used as a prior. Griffiths and

Tenenbaum (2006) computed the prediction functions that result from defining the optimal

prediction to be the median of the posterior distribution, the value t* such that

p(ttotal > t*|t) ¼ p(ttotal < t*|t) ¼ 0.5, where p(ttotal|t) is computed as described in the main

text. The prediction function for the Gaussian does not have a simple analytic form but

essentially indicates that one should guess the mean of the distribution p(ttotal) until the

observed values of t approach this mean and then produce predictions that increase linearly

with t. The power-law distribution produces the prediction function t* ¼ 21/ct, indicating

that one should predict a constant multiple of the observed value of t. The Erlang distribu-

tion produces the prediction function t* ¼ t + b log 2, with predictions always being a little

greater than the observed value of t. Derivations of these prediction functions are provided

by Griffiths and Tenenbaum (2006).

Appendix B: Questions used in the experiment

The questions were presented to participants exactly as shown here, with the probe value

t replacing the ‘‘X’’ in the text below.

Movie grosses

Imagine you hear about a movie that has taken in X million dollars at the box office, but

you do not know how long it has been running. What would you predict the total box office

intake for that movie to be?

Length of poems

If your friend read you her favorite line of poetry and told you it was line X of a poem,

what would you predict the total number of lines to be?
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(Male) Life span

Insurance agencies seek to predict people’s life spans—their age at death—based upon

demographic information. If you were assessing an insurance case for an X-year-old man,

how old would you expect him to be at death?

Reign of Pharaohs

If you opened a book about the history of ancient Egypt and noticed that at 4000 bc a par-

ticular pharaoh had been ruling for X years, how many years total would you expect his

reign to be?

Duration of marriages

A friend is telling you about an acquaintance whom you do not know. In passing, he hap-

pens to mention that this person has been married for X years. How many years do you think

this person’s marriage will last?

Movie run times

If you made a surprise visit to a friend’s place and found that they had been watching a

movie for X minutes, what is your prediction about the total length of the movie (in min-

utes)?

Cake baking times

Imagine you are in somebody’s kitchen and notice that a cake is in the oven. The timer

shows that it has been baking for X minutes. How long to you expect the total amount of

time to be that the cake needs to bake?

Waiting time

If you were calling a telephone box office to book tickets and had been on hold for X

minutes, how long would you expect to be on hold overall?
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