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Knowledge	changes	as	it	is	passed	from	one	person	to	
the	next	and	from	one	generation	to	the	next.	Sometimes	
the	change	is	dramatic:	The	deaf	children	of	Nicaragua	
have	transformed	a	fragmentary	protolanguage	into	a	real	
language	in	the	brief	time	required	for	one	generation	of	
signers	to	mature	within	the	new	language’s	community	
(see,	e.g.,	Senghas	&	Coppola,	2001).	Language	is	only	
one	example,	although	it	is	perhaps	the	most	striking,	of	
the	intergenerational	transmission	of	cultural	knowledge.	
In	many	cases	of	cultural	transmission,	one	learner	serves	
as	the	next	learner’s	teacher.	Languages,	legends,	super-
stitions,	and	social	norms	are	all	transmitted	by	such	a	
process	of	“iterated	learning”	(see	Figure	1A),	with	each	
generation	learning	from	data	produced	by	the	one	that	
preceded	 it	 (Boyd	&	Richerson,	1985;	Briscoe,	2002;	
	Cavalli-Sforza	&	Feldman,	1981;	Kirby,	1999,	2001).	
However,	iterated	learning	does	not	result	in	perfect	trans-
fer	of	knowledge	across	generations.	Its	outcome	depends	
not	just	on	the	data	being	passed	from	learner	to	learner,	
but	on	the	properties	of	the	learners	themselves.

The	prevalence	of	iterated	learning	as	a	mode	of	cul-
tural	transmission	raises	an	important	question:	What	are	
the	consequences	of	iterated	learning	for	the	information	
being	transmitted?	In	particular,	does	this	information	con-
verge	to	a	predictable	equilibrium,	and	are	the	dynamics	
of	this	process	understandable?	This	question	has	been	

explored	in	a	variety	of	disciplines,	including	anthropol-
ogy	and	linguistics.	In	anthropology,	several	researchers	
have	argued	that	processes	of	cultural	transmission	such	
as	iterated	learning	provide	the	opportunity	for	the	biases	
of	learners	to	manifest	in	the	concepts	used	by	a	society	
(Atran,	2001,	2002;	Boyer,	1994,	1998;	Sperber,	1996).	In	
linguistics,	iterated	learning	provides	a	potential	explana-
tion	for	the	structure	of	human	languages	(see,	e.g.,	Bris-
coe,	2002;	Kirby,	2001).	This	approach	is	an	alternative	to	
traditional	claims	that	the	structure	of	language	is	the	result	
of	constraints	imposed	by	an	innate,	special-purpose	lan-
guage	faculty	(e.g.,	Chomsky,	1965;	Hauser,	Chomsky,	&	
Fitch,	2002).	Simulations	of	iterated	learning	with	general-
purpose	learning	algorithms	have	shown	that	languages	
with	considerable	degrees	of	structure	can	emerge	when	
agents	are	allowed	to	learn	from	one	another	(Brighton,	
2002;	Kirby,	2001;	Smith,	Kirby,	&	Brighton,	2003).

Despite	this	interest	in	cultural	transmission,	there	has	
been	very	little	laboratory	work	on	the	consequences	of	
iterated	learning.	Bartlett’s	(1932)	experiments	in	“serial	
reproduction”	were	the	first	psychological	investigations	
of	this	topic,	using	a	procedure	in	which	participants	re-
constructed	a	stimulus	from	memory,	with	their	recon-
structions	serving	as	stimuli	for	later	participants.	Bartlett	
concluded	that	reproductions	seem	to	become	more	con-
sistent	with	the	biases	of	the	participants	as	the	number	
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of	 reproductions	 increases.	However,	 these	claims	are	
impossible	to	validate,	since	Bartlett’s	experiments	used	
stimuli,	such	as	pictures	and	stories,	that	are	not	particu-
larly	amenable	to	rigorous	analysis.	In	addition,	there	was	
no	unambiguous	preexperimental	hypothesis	about	what	
people’s	biases	might	be	for	these	complex	stimuli.	There	
have	been	only	a	few	subsequent	studies	in	serial	repro-
duction,	with	the	most	prominent	being	Bangerter	(2000)	
and	Barrett	and	Nyhof	(2001),	and	thus	we	currently	have	
little	understanding	of	the	likely	outcome	of	iterated	learn-
ing	in	controlled	conditions.	The	possibilities	are	numer-
ous:	Iteration	might	produce	divergence	from	structure	
into	noise	or	into	random	or	unpredictable	alternation	from	
one	solution	to	another,	or	people	might	blend	their	biases	
with	the	data	to	form	consistent	“compromise”	solutions.	
In	this	article,	we	attempt	to	determine	the	outcome	of	
intergenerational	knowledge	transmission	by	testing	the	
predictions	made	by	a	formal	analysis	of	iterated	learning	
in	an	experiment	using	a	controlled	set	of	stimuli.

We	can	gain	some	insight	into	the	consequences	of	it-
erated	learning	by	considering	the	case	in	which	learners	
are	Bayesian	agents.	Bayesian	agents	use	a	principle	of	
probability	theory,	called	Bayes’s rule,	to	infer	the	pro-
cess	that	was	responsible	for	generating	some	observed	
data.	Assume	that	a	learner	has	a	set	of	hypotheses,	H,	
about	the	process	that	could	have	produced	the	data,	d,	and	
that	a	“prior”	probability	distribution,	p(h),	encodes	that	
learner’s	biases	by	specifying	the	probability	the	learner	
assigns	to	the	truth	of	each	hypothesis	h	∈	H 	before	see-
ing	d.	In	the	case	of	learning	a	language,	the	hypotheses,	h,	
are	different	languages,	and	the	data,	d,	are	a	set	of	utter-
ances.	Bayes’s	rule	states	that	the	probability	that	an	agent	
should	assign	to	each	hypothesis	after	seeing	d—known	
as	the	“posterior”	probability,	p(h | d )—is
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where	p(d | h)—the	“likelihood”—indicates	how	likely	d 
is	under	hypothesis	h,	and	p(d )	is	the	probability	of	d	av-

eraged	over	all	hypotheses,	p(d )	5	Sh	p(d | h)	p(h),	some-
times	called	the	prior predictive distribution.	The	assump-
tion	that	learners	are	Bayesian	agents	is	not	unreasonable:	
Adherence	to	Bayes’s	rule	is	a	fundamental	principle	of	
rational	action	in	statistics	and	economics	(Jaynes,	2003;	
Robert,	1994;	Savage,	1954),	and	its	use	underlies	many	
learning	algorithms	(MacKay,	2003;	Mitchell,	1997).

In	iterated	learning	with	Bayesian	agents,	each	learner	
uses	Bayes’s	rule	to	infer	the	hypothesis	used	by	the	pre-
vious	learner	and	generates	the	data	provided	to	the	next	
learner	using	the	results	of	this	inference	(see	Figure	1B).	
Having	formalized	iterated	learning	in	this	way,	we	can	
examine	how	it	affects	the	hypotheses	chosen	by	the	learn-
ers.	The	probability	that	the	nth	learner	chooses	hypoth-
esis	i	given	that	the	previous	learner	chose	hypothesis	j	is
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where	p(hn 5 i | d )	is	the	posterior	probability	obtained	
from	Equation	1.	This	specifies	the	transition	matrix	of	a	
Markov	chain,	with	the	hypothesis	chosen	by	each	learner	
depending	only	on	that	chosen	by	the	previous	learner.	
Griffiths	and	Kalish	(2005)	showed	that	the	stationary	dis-
tribution	of	this	Markov	chain	is	p(h),	the	prior	assumed	
by	the	learners.	The	Markov	chain	will	converge	to	this	
distribution	under	 fairly	general	 conditions	 (see,	 e.g.,	
Norris,	1998),	so	the	probability	that	the	last	in	a	long	line	
of	learners	chooses	a	particular	hypothesis	is	simply	the	
prior	probability	of	that	hypothesis,	regardless	of	the	data	
provided	to	the	first	learner.	In	other	words,	the	stimuli	
provided	for	learning	are	completely	irrelevant	in	the	long	
run,	and	only	the	biases	of	the	learners	affect	the	outcome	
of	iterated	learning.1

A	similar	convergence	result	can	be	obtained	if	we	con-
sider	how	the	data	generated	by	the	learners	(instead	of	the	
hypotheses	they	hold)	change	over	time:	After	many	gen-
erations,	the	probability	that	a	learner	generates	data	d	will	
be	p(d )	5	Sh	p(d | h)	p(h),	the	probability	of	d	under	the	
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Figure 1. (A) Iterated learning. Each learner sees data produced by a learner in a previ-
ous generation, forms a hypothesis about the process by which those data were produced, 
and uses this hypothesis to produce the data that will be supplied to a learner in the next 
generation. (B) Iterated learning with Bayesian agents. The first learner sees data d0, com-
putes a posterior probability distribution over hypotheses according to Equation 1, samples 
a hypothesis h1 from this distribution, and generates new data d1 by sampling from the like-
lihood associated with that hypothesis. These data are provided to the second learner, and 
the process continues, with the nth learner seeing data dn21, inferring a hypothesis hn, and 
generating new data dn.
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prior	predictive	distribution	(Griffiths	&	Kalish,	in	press).	
This	process	of	convergence	is	illustrated	in	Figure	2	for	
the	case	in	which	the	hypotheses	are	linear	functions	and	
the	prior	favors	functions	with	unit	slope	and	zero	inter-
cept	(the	details	of	this	Bayesian	model	appear	in	the	Ap-
pendix).	This	is	a	simple	example	of	iterated	learning,	but	
one	that	is	nonetheless	illustrative	of	convergence	to	the	
prior	predictive	distribution.	As	each	generation	of	learn-
ers	combines	the	evidence	provided	by	the	data	with	their	
(common)	prior,	their	posterior	distributions	move	closer	
to	the	prior,	and	the	data	they	produce	become	more	con-
sistent	with	hypotheses	that	have	high	prior	probability.

The	preceding	analysis	of	iterated	learning	with	Bayes-
ian	agents	provides	a	simple	answer	to	the	question	of	how	
iterated	learning	affects	the	information	being	transmit-
ted:	The	information	will	be	transformed	to	reflect	the	in-
ductive	biases	of	the	learners.	Whether	a	similar	transfor-
mation	will	be	observed	with	human	learners	is	an	open	
empirical	question.	To	test	this	prediction,	we	reproduced	
iterated	learning	in	the	laboratory	using	a	set	of	controlled	
stimuli	for	which	people’s	biases	are	well	understood.	We	
chose	to	use	a	function	learning	task,	because	of	the	prom-
inent	role	that	inductive	bias	seems	to	play	in	this	domain.2	
In	function	learning,	each	learner	sees	data	consisting	of	
(x,	y)	pairs	and	attempts	to	infer	the	underlying	function	
that	relates	y	to	x.	Experiments	typically	present	the	val-
ues	of	x	graphically,	and	participants	produce	a	graphi-
cal	y	magnitude	in	response.	Tests	of	interpolation	and	
extrapolation	with	novel	x	values	reveal	that	people	infer	
continuous	functions	from	these	discrete	trials.	Previous	
experiments	in	function	learning	suggest	that	people	have	
an	inductive	bias	favoring	linear	functions	with	a	posi-
tive	slope:	Initial	responses	are	consistent	with	such	func-
tions	(Busemeyer,	Byun,	DeLosh,	&	McDaniel,	1997),	

and	 those	 functions	 require	 the	 least	 training	 to	 learn	
(Brehmer,	1971,	1974;	Busemeyer	et	al.,	1997).	Kalish,	
Lewandowsky,	and	Kruschke	(2004)	showed	that	a	model	
that	included	such	a	bias	could	account	for	a	variety	of	
phenomena	in	human	function	learning.	If	iterated	learn-
ing	converges	to	an	equilibrium	reflecting	the	inductive	
biases	of	the	learners,	we	should	expect	to	see	linear	func-
tions	with	positive	slope	emerge	after	a	few	generations	
of	learners.	We	tested	this	hypothesis	by	examining	the	
outcome	of	iterated	function	learning,	varying	the	func-
tions	used	to	train	the	first	learner	in	each	sequence.

METhod

Participants
A	total	of	288	undergraduate	psychology	students	from	the	Uni-

versity	of	Louisiana	at	Lafayette	participated	 for	partial	course	
credit.	The	experiment	had	four	conditions,	corresponding	to	dif-
ferent	initial	training	functions.	There	were	72	participants	in	each	
condition,	forming	nine	generations	of	learners	in	eight	“families”;	
the	responses	of	each	generation	of	learners	during	a	posttraining	
transfer	test	were	presented	to	the	next	generation	of	learners	as	the	
to-be-learned	target	stimuli.

Apparatus and Stimuli
Participants	 completed	 the	 experiment	 in	 individual	 sound-

	attenuated	booths.	A	computer	displayed	all	trials	and	was	used	to	
collect	all	responses.	On	each	trial,	a	filled	blue	bar	1	cm	high	and	
from	0.3	cm	(x	5	1)	to	30	cm	(x	5	100)	wide	was	presented	as	the	
stimulus.	The	stimulus	was	always	presented	in	the	upper	portion	of	
the	screen,	with	its	upper	left	corner	approximately	4	cm	from	the	
top	and	4	cm	from	the	left	of	the	edge	of	the	screen.	Each	participant	
entered	a	response	magnitude	by	adjusting	a	vertically	oriented	un-
marked	slider	(located	4	cm	from	the	bottom	and	6	cm	from	the	right	
of	the	screen)	with	the	mouse;	the	slider’s	position	determined	the	
height	of	a	filled	red	bar	1	cm	wide	that	could	extend	up	to	25	cm.	
During	the	training	phase,	feedback	was	provided	in	the	form	of	a	
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Figure 2. Iterated learning with Bayesian agents converging to the prior. (A) The leftmost panel shows the initial data provided to a 
Bayesian learner, a sample of 20 points from a function. The learner inferred a hypothesis (in this case, a linear function) from these 
data, and then generated the predicted values of y shown in the next panel for a new set of inputs x. These predictions were supplied as 
data to another Bayesian learner, and the remaining panels show the predictions produced by learners in each generation as this pro-
cess continued. All learners had a prior distribution over hypotheses favoring linear functions with positive slope (see the Appendix for 
details). As iterated learning proceeded, the predictions converged to a positive linear function. (B) The correlation between predictions 
and the function y 5 x provides a quantitative measure of correspondence to the prior. The solid line shows the median correlation 
with y 5 x for functions produced by 1,000 sequences of iterated learning like that shown in row A. The dotted lines show the 95% 
confidence interval. Using this quantitative measure, it is easy to see that iterated learning quickly produces a strong correspondence 
to the prior.
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filled	yellow	bar	1	cm	wide	placed	1	cm	to	the	right	of	the	response	
bar,	which	varied	from	0.25	cm	(y	5	1)	to	25	cm	(y	5	100)	in	height	
and	was	aligned	so	that	the	height	of	the	bar	was	aligned	with	the	
correct	response.

Procedure
The	experiment	had	both	training	and	transfer	phases.	For	the	

learners	who	formed	the	first	generation	of	any	family,	the	values	
of	the	training	stimuli	were	50	randomly	selected	stimulus	values	
(x)	ranging	from	1	to	100	paired	with	feedback	(y)	given	by	the	
function	of	the	condition	the	participant	was	in.	The	four	functions	
used	during	training	of	the	first	generation	of	participants	in	the	four	
conditions	were	y	5	x	(positive	linear),	y	5	101	2	x	(negative	lin-
ear),	y	5	50.5	1	49.5	sin[π/2	1	x/(5π)]	(nonlinear,	U-shaped),	and	
random	one-to-one	pairings	of	x-	and	y-coordinates	in	which	both	
x,	y	∈{1,	.	.	.	,	100}.	All	values	of	x	were	integers	and	all	values	of	y	
were	rounded	to	the	nearest	integer	prior	to	display.

The	test	items	consisted	of	25	of	the	training	items,	along	with	
25	of	the	50	unused	stimulus	values.	Intergenerational	transfer	took	
place	by	making	the	test	stimuli	and	responses	of	generation	n	of	
each	family	serve	as	the	training	items	of	generation	n11	of	that	
family.	Intergenerational	transfer	was	conducted	entirely	without	
personal	contact,	and	participants	were	not	made	aware	that	their	
test	responses	would	serve	as	training	for	later	participants;	the	use	
of	one	generation’s	test	items	in	training	the	next	generation	was	the	
only	contact	between	generations.

Each	trial	was	initiated	by	the	presentation	of	a	stimulus,	selected	
without	replacement	from	the	50	items	in	either	the	training	or	test	
set.	Following	each	stimulus	presentation,	while	the	stimulus	re-
mained	on	the	screen,	the	participant	used	the	mouse	to	adjust	the	
slider	to	indicate	a	predicted	response	magnitude,	clicking	a	button	
to	record	the	response	when	they	had	adjusted	the	slider	to	the	de-
sired	magnitude.	The	response	could	be	manipulated	ad	lib	until	the	
participant	chose	to	record	it.

During	training,	each	response	was	followed	by	the	presentation	
of	a	feedback	bar.	If	the	response	was	correct	(defined	as	within	
1.5	cm,	or	5	units,	of	the	target	value	y),	there	was	a	study	interval	
of	1-sec	duration	during	which	the	stimulus,	response,	and	feedback	
were	all	presented.	If	the	response	was	incorrect,	a	tone	sounded	
and	the	participant	was	shown	the	feedback	bar.	The	participant	was	
then	required	to	set	the	slider	so	that	the	response	bar	matched	the	
feedback	bar.	A	study	interval	of	2-sec	duration	followed	this	cor-
rection.	Thus,	participants	who	responded	accurately	spent	less	time	
studying	the	feedback;	this	was	the	reward	for	accurate	responses.	
After	each	study	interval,	there	was	a	blank	interval	of	2	sec	before	
the	next	trial.	Each	participant	completed	a	single	block	of	train-
ing	in	which	each	of	the	50	training	values	was	presented	once	in	
random	order.	Test	trials	were	identical	to	training	trials,	except	that	
no	feedback	was	made	available	after	the	response	was	entered.	Par-
ticipants	were	informed	prior	to	the	beginning	of	the	test	phase	about	
this	change.

RESULTS

Figure	3	shows	a	single	family	of	9	participants	for	
each	condition,	chosen	to	be	representative	of	the	overall	
results.	Each	set	of	axes	shows	the	test-phase	responses	of	
a	single	learner	who	was	trained	using	the	data	shown	in	
the	graph	to	its	left.	For	example,	the	responses	of	the	first	
generation	in	each	condition	(in	column	2)	were	based	
on	the	data	provided	by	the	actual	function	(to	the	left,	
in	column	1).	The	responses	of	the	second	generation	(in	
column	3)	were	based	on	the	data	produced	by	the	first	
generation	(in	column	2),	and	so	forth.

Regardless	of	the	data	seen	by	the	first	learner,	iterated	
learning	converged	in	only	a	few	generations	to	a	linear	
function	with	positive	slope	for	28	of	the	32	families	of	

learners.	Figure	3A	indicates	that	a	linear	function	with	
positive	slope	was	stable	under	iterated	learning;	none	of	
the	other	initial	conditions	had	this	level	of	stability.	Fig-
ure	3B	is	reminiscent	of	the	analysis	shown	in	Figure	2:	
Despite	starting	with	a	linear	function	with	negative	slope,	
learners	converged	to	a	linear	function	with	positive	slope.	
Figures	3C	and	3D	show	that	linear	functions	with	positive	
slope	also	emerge	from	iterated	learning	when	the	initial	
function	is	nonmonotonic	or	completely	random.	The	posi-
tive	linear	function	was	not	the	only	one	to	appear	during	
iterated	learning,	however.	In	2	of	the	random-condition	
and	1	of	the	nonlinear-condition	families,	participants	pro-
duced	clear	negative	linear	response	functions	for	one	or	
more	generations,	as	did	all	8	families	in	the	negative	con-
dition.	Thus,	11	families	overall	transmitted	the	negative	
linear	function	at	least	once.	Of	these,	3	(2	in	the	negative	
and	1	in	the	random	condition)	converged	to	the	negative	
function,	and	1	did	not	converge	at	all	by	the	end	of	nine	
generations.	Figure	3E	shows	the	family	that	produced	and	
then	maintained	the	negative	linear	function.

The	results	shown	in	Figure	3	illustrate	an	overall	ten-
dency	for	iterated	learning	to	converge	to	a	positive	lin-
ear	function.	To	provide	a	more	quantitative	analysis,	we	
computed	the	correlation	between	the	responses	of	each	
participant	and	the	positive	linear	function	y	5	x.	The	
outliers	produced	by	families	converging	to	the	negative	
linear	function	made	the	mean	correlation	less	informa-
tive	than	the	median;	Figure	3F	shows	the	median	cor-
relations	at	each	generation	for	each	of	the	four	condi-
tions.	Other	than	the	positive	linear	condition,	in	which	
the	correlation	was	at	ceiling	from	the	first	generation,	
the	correlations	systematically	increased	across	genera-
tions.	As	the	data	clearly	show,	iterated	learning	produced	
an	increase	in	the	consistency	of	people’s	responses	with	
a	positive	linear	function.	This	result	is	consistent	with	a	
prior	that	is	dominated	by	linear	functions.	The	appear-
ance	of,	and	occasional	convergence	to,	a	negative	linear	
function	is	consistent	with	a	prior	that	has	most	mass	on	
one	function	(the	positive	linear)	but	some	mass	on	oth-
ers,	such	as	the	negative	linear.

dIScUSSIon

Our	analysis	of	iterated	learning	with	Bayesian	agents	
indicates	 that	when	Bayesian	 learners	 learn	 from	one	
another,	they	converge	to	a	distribution	over	hypotheses	
determined	by	their	inductive	biases	(Griffiths	&	Kalish,	
2005,	in	press).	The	purpose	of	this	experiment	was	to	
test	whether	iterated	learning	with	human	learners	like-
wise	converges	to	an	outcome	consistent	with	their	in-
ductive	biases.	Previous	research	in	function	learning	has	
suggested	that	people	favor	linear	functions	with	positive	
slopes	(Brehmer,	1971,	1974;	Busemeyer	et	al.,	1997;	
Kalish	et	al.,	2004).	In	our	experiment,	iterated	learning	
converged	to	a	positive	linear	function	in	the	majority	of	
cases,	regardless	of	the	function	seen	by	the	first	learner.	
The	stationary	distribution	is	apparently	complex,	how-
ever,	including	functions	other	than	the	positive	linear,	
as	Kalish	et	al.	(2004)	indeed	suggested.	Significantly	
more	data	would	be	required	to	make	it	possible	to	un-
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equivocally	confirm	that	the	underlying	Markov	chains	
have	converged	to	the	stationary	distribution	and	to	map	
out	the	precise	details	of	that	distribution	for	comparison	
with	previous	estimates	of	the	priors	in	function	learning.	
Nonetheless,	the	dominance	of	the	positive	linear	func-
tion	in	our	results	suggests	that,	for	human	learners	as	for	
Bayesian	agents,	iterated	learning	produces	convergence	
to	the	prior.

These	empirical	results	are	consistent	with	our	theoreti-
cal	analysis	of	iterated	learning	and	have	two	significant	
implications.	First,	they	support	the	idea	that	information	
transmitted	via	iterated	learning	will	ultimately	come	to	
mirror	the	structure	of	the	human	mind,	a	conclusion	con-
sistent	with	claims	that	processes	of	cultural	transmission	
can	allow	the	biases	of	learners	to	manifest	in	cultures	
(Atran,	2001,	2002;	Boyer,	1994,	1998;	Sperber,	1996).	
This	suggests	that	languages,	legends,	religious	concepts,	
and	social	norms	are	all	 tailored	 to	match	our	biases,	
providing	a	formal	justification	for	studying	these	phe-
nomena	as	a	means	of	understanding	human	cognition.	
These	results	also	validate	the	interpretation	of	existing,	

less	controlled	experiments	using	serial	reproduction	(see,	
e.g.,	Bangerter,	2000;	Barrett	&	Nyhof,	2001;	Bartlett,	
1932)	as	revealing	people’s	biases.

Second,	and	perhaps	more	importantly,	our	results	sug-
gest	that	iterated	learning	can	be	used	as	a	method	for	
exploring	the	biases	that	guide	human	learning.	Many	of	
the	problems	that	are	central	to	cognitive	science—from	
learning	and	using	language	to	inferring	the	structure	of	
categories	 from	a	 few	examples—are	problems	of	 in-
duction.	A	variety	of	arguments,	from	both	philosophy	
(e.g.,	Goodman,	1955)	and	learning	theory	(e.g.,	Kearns	
&	Vazirani,	1994;	Vapnik,	1995),	stress	the	importance	
of	inductive	biases	in	solving	these	problems.	In	order	
to	understand	how	people	make	inductive	inferences,	we	
need	to	understand	the	biases	that	constrain	those	infer-
ences.	The	present	experiment	involved	a	case	in	which	
the	general	shape	of	learners’	biases	was	known	prior	to	
the	study.	From	the	results	of	this	experiment,	it	appears	
possible	to	use	our	procedure	to	investigate	biases	in	situa-
tions	in	which	they	are	unknown	and	people	are	unable	(or	
unwilling)	to	reveal	what	those	biases	are.	By	reproducing	
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Figure 3. Iterated learning with human learners. The leftmost panel in each row shows the data seen by the first learner, 
a sample of 50 points from one of four functions. The other columns show the data produced by each generation of learners, 
trained with the data from the column to their left. Each row shows a single sequence of 9 learners, drawn at random from the 
eight “families” of learners run with the same initial data. The rows differ in the functions used to generate the data shown to 
the first participant: (A) a linear function with positive slope; (B) a linear function with negative slope; (c) a nonlinear function; 
(d) a random set of points. In each case, iterated learning quickly converges to a linear function with positive slope, consistent 
with findings indicating that human learners are biased toward this kind of function. (E) An example from the minority of cases 
(3 out of 32) in which families produced negative linear functions at the end of the experiment; these results suggest that such 
functions receive some weight under the prior. (F) The median correlation with y 5 x across all families was assessed for the 
four conditions illustrated in rows A–E. Regardless of the initial data, this correlation increased over generations, as predictions 
became more consistent with a positive linear function.
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iterated	learning	in	the	laboratory,	we	may	be	able	to	map	
out	the	implicit	inductive	biases	that	make	human	learn-
ing	possible.
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noTES

1.	In	the	case	of	language,	demonstrating	that	iterated	learning	con-
verges	to	the	prior	distribution	over	hypotheses	maintained	by	the	learners	
should	not	be	taken	as	implying	that	linguistic	universals	are	necessarily	
the	consequence	of	innate	constraints	specific	to	language	learning.	The	
biases	encoded	by	the	prior	need	not	be	either	innate	(since	they	could	re-
sult	from	experiences	with	data	other	than	those	under	consideration)	or	
language	specific	(since	they	could	include	general-purpose	constraints	
such	as	limitations	on	information	processing)	(see	Griffiths	&	Kalish,	
in	press,	for	a	more	detailed	discussion).

2.	Our	use	of	function	learning	was	also	inspired	by	simulations	of	
iterated	learning	of	languages,	in	which	a	language	is	often	conceived	of	
as	a	function	mapping	meanings	to	utterances	(e.g.,	Smith	et	al.,	2003).
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APPEndIx 
Bayesian Linear Regression

Linear	regression	is	a	standard	problem	that	is	dealt	with	in	detail	in	several	books	on	Bayesian	statistics,	
including	Box	and	Tiao	(1992)	and	Gelman,	Carlin,	Stern,	and	Rubin	(1995).	For	this	reason,	our	treatment	of	
this	analysis	is	extremely	brief.	Assume	that	the	data	d	are	a	set	of	n	pairs	(xi,	yi)	and	that	the	hypothesis	space	
H	consists	of	linear	functions	of	the	form	y	5	b1x	1b0	1	ε,	where	ε	is	Gaussian	noise	with	variance	σY

2.	Since	
a	hypothesis	h	is	identified	entirely	by	the	parameters	b1	and	b0,	we	can	summarize	both	data	and	hypotheses	
using	column	vectors	x	5	(x1,	x2,	.	.	.	,	xn)T,	y	5	(y1,	y2,	.	.	.	,	yn)T,	and	b	5	(b1,	b0)T.

The	likelihood,	p(d | h),	is	simply	the	probability	of	x	and	y	given	b,	p(y,	x | b).	Assuming	that	x	follows	a	
distribution	q(x)	that	is	constant	over	all	hypotheses,	we	have	p(y,	x | b)	5	p(y | x,	b)	q(x).	From	the	assumption	
that	y	5	b1x	1 b0	1	ε,	it	follows	that	p(y | x,	b)	is	Gaussian	with	mean	xb	and	covariance	matrix	σY

2In,	where	
x	5	(x,	1n),	and	1n	and	In	are	an	n	3	1	vector	of	1s	and	the	n	3	n	identity	matrix,	respectively.	The	prior	p(h)	is	
a	distribution	over	the	parameters	b	and	p(b).	We	take	p(b)	to	be	Gaussian	with	mean	mb	and	covariance	matrix	
σb

2I2.
The	posterior	distribution	p(h | d )	is	a	distribution	over	b	given	x	and	y.	Using	our	choice	of	prior	and	likeli-

hood,	this	is	Gaussian	with	covariance	matrix
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Figure	2	was	generated	by	simulating	iterated	learning	with	this	model.	The	first	learner	saw	20	data	points	gen-
erated	by	sampling	x	uniformly	at	random	from	the	range	[0,	1]	and	taking	y	5	1	2	x.	A	value	of	b	was	sampled	
from	the	resulting	posterior	distribution	and	used	to	generate	values	of	y	for	20	new	randomly	drawn	values	of	
x,	which	were	supplied	as	data	to	the	next	learner.	This	process	was	continued	for	a	total	of	9	learners,	producing	
the	results	shown	in	the	figure.	The	likelihood	and	prior	assumed	by	the	learners	had	σY

2	5	0.0025,	σb
2	5	0.005,	

and	mb	5	(1,	0)T,	corresponding	to	a	strong	prior	favoring	functions	with	a	slope	of	1	and	an	intercept	of	0.
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