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Abstract

We argue that human judgments about hidden
causal structure can be explained as the operation
of domain-general statistical inference over causal
models constructed using domain knowledge. We
present Bayesian models of causal induction in two
previous experiments and a new study. Hypothet-
ical causal models are generated by theories ex-
pressing two essential aspects of abstract knowledge
about causal mechanisms: which causal relations
are plausible, and what functional form they take.

Everyday reasoning draws on notions that go far
beyond the observable world, just as modern sci-
ence draws upon theoretical constructs beyond the
limits of measurement. The richness of our naive
theories is a direct result of our ability to postu-
late hidden causal structure. This capacity to rea-
son about unobserved causes forms an essential part
of cognition from early in life, whether we are rea-
soning about the forces involved in physical systems
(e.g., Shultz, 1982), the mental states of others (e.g.,
Perner, 1991), or the essential properties of natural
kinds (e.g., Gelman & Wellman, 1991).

The central role of hidden causes in naive theories
makes the question of how people infer hidden causal
structure fundamental to understanding human rea-
soning. Psychological research has shown that peo-
ple can infer the existence of hidden causes from oth-
erwise unexplained events (Ahn & Luhmann, 2003),
and determine hidden causal structure from very lit-
tle data (Kushnir, Gopnik, Schulz, & Danks, 2003).
This work has parallels in computer science, where
the development of a formalism for reasoning about
causality – causal graphical models – has led to algo-
rithms that use patterns of dependency to identify
causal relationships (Pearl, 2000; Spirtes, Glymour,
& Scheines, 1993). It has recently been proposed,
chiefly by Gopnik, Glymour, and their colleagues
(Glymour, 2001; Gopnik, Glymour, Sobel, Schulz,
Kushnir, & Danks, 2004), that these algorithms may
also explain how people infer causal structure.

A fundamental issue in explaining how people in-
fer causal relationships is accounting for the interac-
tion between abstract causal knowledge and statisti-
cal inference. The classic debate between approaches
that emphasize cause-effect covariation and those
that emphasize mechanism knowledge (e.g., New-

some, 2003) turns on this issue. Causal graphical
models provide a language in which the problem of
causal induction can be formally expressed. How-
ever, conventional algorithms for inducing causal
structure (e.g., Pearl, 2000; Spirtes et al., 1993) do
not provide a satisfying account of either the roles
of causal knowledge or statistical inference, or their
interaction. These algorithms use tests of statisti-
cal independence to establish constraints that must
be satisfied by causal structures consistent with the
observed data. No knowledge of how causal mech-
anisms operate, or the functional form of relation-
ships between cause and effect, enters into the in-
ference process. As we argue below, such knowledge
is necessary to explain how people are able to in-
fer causal structure from very small samples, and to
infer hidden causes from purely observational data.
Constraint-based methods are also unable to explain
people’s graded sensitivity to the strength of evi-
dence for a causal structure, because they reason de-
ductively from constraints to consistent structures.

We will present a rational account of human in-
ference, Theory-Based Causal Induction, which em-
phasizes the interaction between causal knowledge
and statistical learning. Causal knowledge appears
in the form of causal theories, specifying the princi-
ples by which causal relationships operate in a given
domain. These theories are used to generate hy-
pothesis spaces of causal models – some with hid-
den causes, some without – that can be evaluated
by domain-general statistical inference. We will use
this framework to develop models of people’s infer-
ences about hidden causes in two physical systems:
a mechanical system called the stick-ball machine
(Kushnir et al., 2003), and a dynamical system in-
volving an explosive compound called Nitro X.

Theory-based causal induction
Our account of causal induction builds on causal
graphical models, extending the formalism to incor-
porate the abstract knowledge about causal mecha-
nism that plays an essential role in human inferences.
We will briefly introduce causal graphical models,
consider how prior knowledge influences causal in-
duction, and describe how we formalize the contri-
bution of causal theories.



Causal graphical models

Graphical models represent the dependency struc-
ture of a joint probability distribution using a graph
in which nodes are variables and edges indicate de-
pendence. The graphical structure supports efficient
computation of the probabilities of events involv-
ing these variables. In a causal graphical model the
edges indicate causal dependencies, with the direc-
tion of the arrow indicating the direction of causa-
tion, and they support inferences about the effects
of interventions (Pearl, 2000). An intervention is an
event in which a variable is forced to hold a value,
independent of any other variables on which it might
depend. Intervention on a variable A is denoted
do(A). Probabilistic inference on a modifified graph,
in which incoming edges to A are removed, can be
used to assess the consequences of intervening on A.

The structure of a causal graphical model implies
a pattern of dependency among variables under ob-
servation and intervention. Conventional algorithms
for inferring causal structure use standard statistical
tests, such as Pearson’s χ2 test, to find the pattern of
dependencies among variables, and then deductively
identify the structure(s) consistent with that pattern
(e.g., Spirtes et al., 1993). These “constraint-based”
algorithms can also exploit the results of interven-
tions, and often require both observations and in-
terventions in order to identify the hidden causal
structure. Gopnik, Glymour, and colleagues have
suggested that this kind of constraint-based reason-
ing may underlie human causal induction (Glymour,
2001; Gopnik et al., 2004; Kushnir et al., 2003).

The role of causal theories

Constraint-based algorithms for causal induction
make relatively little use of prior knowledge. While
particular causal relationships can be ruled out a pri-
ori, there is no way to represent the belief that one
structure may be more likely than another. Further-
more, the use of statistical tests like χ2 makes only
weak assumptions about the form of causal relation-
ships: these tests simply assess dependency, regard-
less of whether a relationship is positive or negative,
deterministic or probabilistic, strong or weak.

Several researchers (e.g., Shultz, 1982) have ar-
gued that knowledge of causal mechanism plays a
central role in human causal induction. Mechanism
knowledge is usually cited in arguments against sta-
tistical causal induction, but we view it as critical
to explaining how statistical inferences about causal
structure are possible from sparse data. Knowledge
about causal mechanisms provides two kinds of re-
strictions on possible causal models: restrictions on
which relationships are plausible, and restrictions on
the functional form of those relationships. Restric-
tions on plausibility might indicate that one causal
structure is more likely than another, while restric-
tions on functional form might indicate that a par-
ticular relationship should be positive and strong.

These restrictions have important implications for
causal induction algorithms. If all structures are
possible, both observations and interventions are
typically required to identify hidden causes, and
without strong assumptions about the functional
form of causal relationships, samples must be rel-
atively large. With limitations on the set of possible
causal structures and expectations about functional
form, however, it is possible to make causal infer-
ences from just observations and from small samples
– important properties of human causal induction.

Using causal theories in causal induction

The causal mechanism knowledge that is relevant for
statistical causal inference may be quite abstract,
and may also vary across domains. Much of this
knowledge may be represented in intuitive domain
theories. In contrast to Gopnik et al. (2004), who
suggest that causal graphical models are the pri-
mary substrate for intuitive theories, we emphasize
the role of intuitive theories at a more abstract level,
providing restrictions on the set of causal models
under consideration. Such restrictions cannot be
represented as part of a causal graphical model:
causal graphical models express the relations that
hold among a finite set of propositions, while causal
theories involve statements about all relations that
could hold among entities in a given domain.

Formally, we view causal theories as hypothesis
space generators: a theory is a set of principles that
can be used to generate a hypothesis space of causal
models, which are compared via Bayesian inference.
The principles that comprise a theory specify which
relations are plausible and the functional form of
those relations. These principles articulate how
causal relationships operate in a given domain, but
need not identify the mechanisms underlying such
relationships: all that is necessary for causal induc-
tion is the possibility that some mechanism exists,
and expectations about the functional form associ-
ated with that mechanism. This vague and abstract
mechanism knowledge is consistent with the finding
that people’s understanding of causal mechanism is
surprisingly shallow (Rozenblit & Keil, 2002).

In the remainder of the paper, we will demonstrate
how Theory-Based Causal Induction can be used to
explain human inferences about hidden causes in
physical systems. Different systems require differ-
ent causal theories. We will examine inferences in
a mechanical system, the stick-ball machine (Kush-
nir et al., 2003), and in a dynamical system, Nitro
X, which we explore in a new experiment. When
reasoning about these systems, people infer hidden
causal structure from very few observations, and are
sensitive to graded degrees of evidence.

The stick-ball machine

Kushnir et al. (2003) conducted two experiments in
which participants had to infer the causal structure
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Figure 1: (a) A stick-ball machine. (b) Graphs indi-
cating potential causal structures for the stick-ball
machine. Nodes A and B correspond to the two
balls, nodes marked C are hidden causes.

of a physical system, the “stick-ball machine”, con-
sisting of two colored balls (A and B) mounted on
sticks which could move up and down on a box (see
Figure 1(a)). The mechanical apparatus moving the
balls was concealed, keeping the actual causal re-
lationship unknown. In both experiments, all par-
ticipants were familiarized with the machine, and
told that if one ball caused the other to move it
did so “almost always”. This probabilistic causal
relation was demonstrated by showing the two balls
move together four times, an event we denote 4AB,
and A moving alone twice, 2AB̄. There were three
test conditions in Experiment 1, seen by all partic-
ipants. In the common unobserved cause condition,
participants saw 4AB, and four trials in which the
experimenter intervened, twice moving A with no ef-
fect on B, 2B̄|do(A), and twice moving B with no
effect on A, 2Ā|do(B). In the independent unob-
served cause condition, participants saw 2AB̄, 2ĀB,
1AB, 2Ā|do(B), and 2B̄|do(A). In the one ob-
served cause condition, participants saw 4B|do(A)
and 2B̄|do(A). Experiment 2 replicated the com-
mon unobserved cause condition, and compared this
with a pointing control condition in which interven-
tions were replaced with observations (4AB, 2ĀB,
2AB̄). The order of conditions and trials within
conditions was randomized across participants. In
each condition, participants identified the underly-
ing causal structure by indicating graphs similar to
those shown in Figure 1(b). The results of both
experiments are combined in Figure 2. One causal
structure was chosen by the majority of people in
each condition – Graph 1 in the common unobserved
cause condition, Graph 0 in the independent unob-
served causes condition, Graph 2 in the one observed
cause condition, and Graph 0 in the pointing control.

The results of these experiments provide two chal-
lenges to constraint-based accounts. First, people
are able to make inferences from small samples – in
many cases, far less data than might be required for
all relevant χ2 tests to yield results consistent with
the appropriate causal structure. Second, people’s
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Figure 2: Results of Kushnir et al. (2003), shown
with predictions of Bayesian models.

judgments reflect a sensitivity to graded degrees of
evidence: in the independent unobserved causes con-
dition, over 95% of participants chose Graph 1, while
only 60-80% of people chose the most popular struc-
ture in the other conditions. This was not simply a
consequence of a preference for Graph 0 – the same
structure was less popular in the pointing control
condition, suggesting that there is a difference in
the evidence that the data provide for Graph 0 in
these two conditions. Constraint-based algorithms
are not sensitive to graded degrees of evidence: a
causal structure is either consistent or inconsistent
with the pattern of dependencies in a dataset.

A theory-based account

Our model of the stick ball machine uses a physical
theory that contains three principles:

1. Balls never move without a cause.
2. A hidden cause moves with probability α.
3. A moving cause moves its effect with probability β.

If we add the restrictions that every ball has a sin-
gle cause and hidden causes never have causes (but
can move themselves, per Principle 2), we obtain the
four structures shown in Figure 1(b). The principles
of the physical theory place strong constraints on the
functional form of the causal relationships identified
in this structure, allowing us to compute the proba-
bility of events involving A and B for each graphical
structure, as shown in Table 1.

Given a dataset D, we compute a poste-
rior probability distribution over these struc-
tures, P (Graph i|D), combining prior probabilities,



Table 1: Event probabilities for causal structures
Event Graph 0 Graph 1 Graph 2
AB (αβ)2 αβ2 αβ2

ĀB αβ(1 − αβ) αβ(1 − β) 0
AB̄ αβ(1 − αβ) αβ(1 − β) αβ(1 − β)
ĀB̄ (1 − αβ)2 1 − 2αβ + αβ2 1 − αβ

A|do(B) αβ αβ αβ
B|do(A) αβ αβ β

Note: Probabilities for Graph 3 are the same as
those for Graph 2, exchanging the roles of A and B.

P (Graph i), with the probability of the observed
data under each structure, P (D|Graph i), using
Bayes’ rule:

P (Graph i|D) ∝ P (D|Graph i)P (Graph i)

P (D|Graph i) is the product of the probabilities of
the individual events making up D, which can be
obtained from Table 1.

If we assume a uniform prior for P (Graph i),
the causal theory leaves two parameters unspecified:
α, the probability of a hidden cause moving on a
given trial, and β, the probability that a moving
cause moves its effect. We set β empirically, via
a small experiment. We showed 10 participants a
computer simulation of the stick-ball machine, and
reproduced the familiarization trials used by Kush-
nir et al. (2003): participants were told that when
A causes B, it makes it move “almost always”, and
were shown that A moved B on four of six trials. We
then asked them how often they expected A would
move B. The mean and median response was that A
would move B on 75% of trials, so we used β = 0.75.

Figure 2 shows the predictions of the Bayesian
model with α = 0.47. The model gave a correlation
of r = 0.94 with the data, and correctly predicted
the most common response in each condition. The
model also admits graded degrees of evidence, with
the observations and interventions in the indepen-
dent unobserved causes condition providing stronger
evidence for Graph 0 than the observations in the
pointing control. The model departs from people’s
judgments in one case, failing to predict the minor-
ity preference for Graph 0 in the common unobserved
cause condition. This disparity could have many ex-
planations, such as a default preference for indepen-
dence between objects, or differences in the salience
of different data types and causal structure. For in-
stance, interventions may be weighted higher than
observations by a factor of γ, and hidden common
causes may receive only a fraction 1/δ of the prior
probability accorded to other structures. Figure 2
shows an almost-perfect fit (r = 0.99) for such a
model, Bayes (γ,δ), with γ = 4, δ = 2, α = 0.4.
Further experiments will be necessary to determine
whether these sorts of psychological variables play a
role in the process of causal induction.

(b)

(a)

Figure 3: (a) Four cans of the extremely unstable
compound Nitro X. (b) A simultaneous explosion.

Nitro X

To provide a further demonstration of the impor-
tance of graded degrees of evidence and the ability
to infer hidden causes from very little data, we con-
ducted an experiment that tested people’s ability to
infer the causal structure of a dynamical physical
system. Our experiment presents a more severe in-
ductive challenge than the tasks considered by Kush-
nir et al. (2003), as it requires inferring a hidden
common cause from just a single observation, with
no verbal cues that such a structure might exist. In
the experiment, we introduced people to a novel sub-
stance, Nitro X, and illustrated its dynamics: cans
of Nitro X could spontaneously explode, and could
detonate one another after a time delay that was a
linear function of spatial separation, as would be ex-
pected from the slow propagation of pressure waves.
We then presented them with the simultaneous ex-
plosion of several cans, without the delays charac-
teristic of pressure waves propagating from one can
to the next. We expected that people would see
this suspicious coincidence as evidence for some kind
of hidden common cause, such as an external force
shaking the table. We varied the number of cans, m,
to see whether the magnitude of the coincidence had
an effect on people’s inference to a hidden cause.

Method

Participants Participants were 64 members of the
MIT Brain and Cognitive Sciences subject pool, split
evenly over four conditions (m = 2, 3, 4, 6).

Stimuli The stimuli were pictures of cans sitting
on a table, presented on a computer screen. A
new set of cans was shown on each trial, and by
the end of the trial all cans on the screen had ex-
ploded, demonstrated by cartoon explosion graphics
like those shown in Figure 3.

Procedure The experiment consisted of three fa-
miliarization trials and five test trials. The famil-
iarization trials introduced the participants to Nitro
X. In the first trial, participants were told that Ni-
tro X is very unstable, and this was demonstrated
by the experimenter tapping a can and the can ex-
ploding. In the second trial, participants saw two
cans of Nitro X, the experimenter tapped one can,
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Figure 4: Results of the Nitro X experiment.

which exploded, and the can next to it exploded
shortly afterwards. On the third trial, participants
were again reminded about the instability of Nitro
X, and saw a single can explode without any action
by the experimenter, after waiting for a few seconds.

The first two test trials were identical for all four
conditions, and both involved four cans exploding
in a causal chain, with a delay between successive
explosions. In the third test trial, the number of cans
in the display was varied, m = 2, 3, 4 or 6, depending
on condition. After a brief delay, all of the cans
exploded simultaneously. The last two test trials
allowed the participants to interact with Nitro X by
tapping, and will not be discussed further here.

After each test trial, participants were given a
sheet of questions for each test trial. These sheets
gave three options:

1. The first can exploded spontaneously. That explosion
caused the other cans to explode, in a chain reaction.

2. Each can exploded spontaneously, all on its own.
There was no causal connection between them.

3. Neither of the above is a likely explanation. Please
write a plausible alternative here.

The order of the first two options was counterbal-
anced, but the third option was always last.

Results and Discussion

For all trials, two rates examined the written re-
sponses of participants choosing the third option
above, and were in 100% agreement in classifying all
such responses as indicating a hidden cause. Over
95% of participants correctly identified the causal
chain in the first two trials. The proportion of partic-
ipants identifying a hidden cause on the third trial,
with the simultaneous explosion, is shown in Figure
4. There was a statistically significant effect of m,
χ2(3) = 11.36, p < 0.01. The number of cans influ-
enced whether people inferred hidden causal stuc-
ture, with most people seeing two cans as indepen-
dent but six as causally related.

Constraint-based algorithms cannot explain our
results. If we imagine that time is broken into dis-
crete intervals, and a can either explodes or does

not explode in each interval, then we can construct
a contingency table for each pair of cans. Statis-
tical significance tests will identify pairwise depen-
dencies among all cans that explode simultaneously,
provided appropriate numbers of non-explosion tri-
als are included. The existence of a hidden common
cause is consistent with such a pattern of depen-
dency. However, as a result of reasoning deductively
from this pattern, the evidence for such a structure
does not increase with m: a hidden common cause
is merely consistent with the pattern for all m > 2.

This experiment also illustrates that people are
willing to infer hidden causal structure from very
small samples – just one datapoint – and from obser-
vations alone. Constraint-based algorithms cannot
solve this problem: while a hidden common cause is
consistent with the observed pattern of dependency,
causal structures in which the cans influence one an-
other cannot be ruled out without intervention in-
formation. People do not consider this possibility
because they have learned that the mechanism by
which cans influence one another has a time delay.
Further situations in which the temporal properties
of causal relationships influence causal induction are
described by Hagmayer and Waldmann (2002).

A theory-based account

The results of the Nitro X experiment are easy to
model: any increasing function of the number of cans
would be sufficient. Our goal in modeling these data
is to illustrate how Theory-Based Causal Induction
extends to a system with non-trivial dynamics and
different causal mechanisms, and to show that in-
ferences to hidden causes from the smallest possible
sample – a single observation – can have a physically
plausible and statistically rational explanation.

We model the explosion times of cans by assum-
ing that at each infinitesimal moment, there is a cer-
tain probability that the can will explode. This as-
sumption means that the explosion time of each can
follows a Poisson process, with a “rate parameter”
determining the probability of explosion at each mo-
ment. We set the rates using the following principles:

1. A can explodes spontaneously at rate α.
2. A hidden cause becomes active at rate γ.

3. At the moment a hidden cause is active, a can influ-
enced by that cause explodes at rate α + β.

A complete theory of Nitro X would need to include
further principles stating the functional form of the
causal relationship between cans, encoding the fact
that this relationship involves a time delay. We have
omitted these principles because they do not directly
affect the inference to a hidden cause when all ex-
plosions are simultaneous.

This theory generates a large number of possi-
ble causal structures, with hidden causes influencing
various subsets of the cans. We will focus on the two
structures shown in Figure 5: Graph 0, in which all
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Figure 5: Graphs indicating potential causal struc-
tures for the Nitro X experiment.

cans explode spontaneously, is the “null hypothesis”
for any inference concerning hidden causes, while
Graph 1, in which all cans are also influenced by
a hidden cause, gives the highest probability to a si-
multaneous explosion. These structures are defined
on variables representing the time at which cans ex-
plode, t1, . . . , tm, and the time the hidden cause be-
comes active, tC . The inference to a hidden common
cause is modeled by computing the posterior prob-
ability P (Graph 1|T ), where T = {t1, . . . , tm}. In a
simultaneous explosion, all ti take the same value, t.

It follows from the theory outlined above that
for Graph 0, each ti is an independent Poisson
process with rate α, which gives P (T |Graph 0) =
αm exp{−mαt}. For Graph 1, tC follows a Poisson
process with rate γ. Conditioned on tC , each ti is a
Poisson process with rate α, except at the moment
when the hidden cause becomes active, at which
point the rate is α + β. Computing P (T |Graph 1)
requires integrating over all values of tC , which we
approximate by choosing tC to maximize P (T |tC):

P (T |Graph 1) =

∫
∞

0

P (T |tC)P (tC) dtC

≈ γ(α + β)m exp{−mαt − γt}

Applying Bayes’ rule, it follows1 that P (Graph 1|T )
is a sigmoid function of m,

P (Graph 1|T ) =
1

1 + exp{−gm − b}

for g = log α+β

α
and b = log P (Graph 1)

P (Graph 0) + log γ − γt.

The model predicts that increasing m should in-
crease P (Graph 1|T ) for any positive values of α and
β, as this results in a positive gain, g. The theory
involves four parameters: α, β, γ, and P (Graph 0).
Since these four parameters are not identifiable –
multiple sets of parameter values are consistent with
the same sigmoid function – we set the parameters of
the sigmoid g and b. Using g = 0.58 and b = −2.90
gives r = 0.958, and the predictions shown in Fig-
ure 4. These parameters indicate β = 0.79α and an
initial preference for Graph 0.

Our theory-based approach explains why the num-
ber of cans involved in a simultaneous explosion

1A full derivation of this result is available at
http://www-psych.stanford.edu/∼gruffydd/reports/nitrox.pdf

should influence the evidence for a hidden cause,
but is clearly not the only model compatible with
these data. However, our analysis exposes the ratio-
nal basis for human judgments, and makes further
intuitive predictions that we are in the process of
testing. For example, the −γt term in the expres-
sion for b indicates that, all other things being equal,
decreasing the time before a simultaneous explosion
increases the evidence for a hidden cause.

Conclusion

Explaining human causal induction requires supple-
menting the formal methods developed in computer
science with the causal domain knowledge that peo-
ple possess. We have shown that using physical the-
ories to inform rational statistical inference makes
it possible to explain how people infer hidden causal
structure from such limited data. We anticipate that
the same framework, using appropriately modified
causal theories, can shed light on inferences about
hidden causes in other domains.
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