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Solving simple multiplication problems is an important
part of the mathematics education of schoolchildren. By
adulthood, individuals have developed sufficient expertise
at solving multiplication problems to be capable of fast,
accurate responses. Nevertheless, even adults produce con-
sistent patterns of errors on simple problems (Campbell,
1994; Campbell & Graham, 1985). Explanations for these
errors have focused on the contributions of the similarity
of multiplication problems (Campbell, 1995; Campbell &
Graham, 1985) and the frequency with which problems are
encountered (Ashcraft & Christy, 1995). In this paper, we
apply techniques from multidimensional scaling (MDS)
and computational modeling to investigate the contribu-
tions of these factors to performance on mental multipli-
cation tasks.

Patterns of Errors in Mental Multiplication
Performance on simple multiplication problems has

been widely studied, mainly using the production task (e.g.,
Campbell & Tarling, 1996). This task involves visually pre-
senting a problem, commonly between 2 ́ 2 and 9 ́ 9, and
eliciting a verbal response. Dependent variables include
error rates and response times, which are positively corre-
lated (Campbell & Graham, 1985). The errors produced

on simple multiplication problems show several trends, in-
volving both the absolute error rate and the type of errors
observed. 

Absolute error rates. One common finding is that error
rate increases as a function of the numerical magnitude of
arithmetic problems (Geary, Widaman, & Little, 1986; Park-
man & Groen, 1971; Stazyk, Ashcraft, & Hamann, 1982).
Thus, large problems, such as 9 ́ 7, tend to have a higher
error rate than do smaller problems, such as 3 ´ 4, a phe-
nomenon termed the problem size effect. Problem size
does not affect performance on all problems equally. The tie
problems, with equal operands (e.g., 7 ́ 7), are less affected
by problem size (Miller, Perlmutter, & Keating, 1984;
Parkman, 1972), as are problems with five as an operand
(Campbell, 1994).

The classification of errors. The errors made on simple
multiplication problems differ in type as well as in frequency.
Campbell and Graham (1985) identified three common
types of error: operand errors, table errors, and nontable
errors. An operand error is a response appropriate to one
of the operands of the problem, but not to the other, such
as responding 28 to 6 ´ 4, where 28 is the correct answer
to 7 ´ 4. Table errors occur when the response is the cor-
rect solution to another simple multiplication problem
with no shared operands, such as responding 27 to 6 ´ 4,
where 27 is the correct answer to 9 ́ 3. Nontable errors are
responses that are not the product of any of the operands
in the problem set, such as 34 and 22. Campbell and Gra-
ham had 60 adult participants complete 144 multiplication
problems each and found an overall error rate of 7.6%. Of
the errors reported, 79% were operand errors, 14% table
errors, and 7% nontable errors. Other error types have also
been identified, such as operand intrusions, where one of
the operands of a problem appears in a response, and in-
teroperation confusions, where the wrong operation is ap-
plied to a pair of operands (Campbell, 1994, 1997). How-
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ever, the problem size effect and the relative frequency of
operand, table, and nontable errors serve as the basic phe-
nomena that theories of mental multiplication have at-
tempted to explain. 

Theories of Mental Multiplication
Research concerning the performance of adults on simple

arithmetic problems has found that the task is heavily reliant
on retrieval from memory (Ashcraft, 1985; Koshmider &
Ashcraft, 1991). Explanations of the errors made by adults
on simple arithmetic problems have focused on the prop-
erties of this retrieval process (for reviews, see Ashcraft,
1992; Dehaene, 1992; McCloskey, Harley, & Sokol, 1991).
Two of the most prominent theories have referred to in-
terference between problems (Campbell, 1995; Campbell
& Graham, 1985), and the strength of problem–solution
pairs in memory (Ashcraft & Christy, 1995).

Interference. Campbell and Graham (1985) suggested
that the errors observed in mental multiplication are due
to interference between similar problems in memory. This
theory has been formalized as a computational model, called
the network interference model (Campbell, 1995; Camp-
bell & Oliphant, 1992). The network interference model
predicts the problem size effect because it assumes that
similarity between problems increases as a function of the
size of the answer. The model accounts for the high fre-
quency of operand errors through the further assumption
that problems sharing operands are similar. 

There is some support for an effect of interference in
mental multiplication. Campbell (1987) found that the time
taken to formulate a correct response to a multiplication
problem was related to how recently similar problems had
been presented. Consistent with an interference effect,
participants showed longer response times after the pre-
sentation of a number of similar problems. Graham and
Campbell (1992) carried out a set of experiments using an
“alphaplication” task, in which participants had to per-
form arithmetic with letters instead of digits, and found sim-
ilar error patterns to multiplication. Graham and Campbell
claimed that this was because the tasks share a common
similarity structure and are thus equally affected by inter-
ference.

Strength. Ashcraft and Christy (1995) argued that the
problem size effect might be due to the strength of asso-
ciation between problems and solutions. Assuming that re-
peated presentation of a stimulus produces a strongermemory
trace, Ashcraft and Christy examined the frequency with
which different multiplication problems appear in school
math texts. They found a bias toward the presentation of
small problems and suggested that the higher error rate
shown with large multiplication problems may be a con-
sequence of less exposure.

The low frequency of large multiplication problems may
extend beyond school math texts. In any naturally occur-
ring set of integers, large numbers are far less likely than
small numbers, a relationship termed Benford’s Law (Ben-
ford, 1938). This suggests that multiplication problems with
large operands are less likely to be encountered in everyday

experience. Fendrich, Healy, and Bourne (1993) found that
giving participants equal practice on all problems reduced
the problem size effect, again suggesting that problem fre-
quency has an effect on performance.

Integrated theories. Empirical evidence suggests that
both interference and strength affect the production of re-
sponses to simple multiplication problems. Accounts in-
tegrating these two factors have also been offered. One ex-
ample of an integrated approach is that taken by Zbrodoff
(1995), who explored the relationship between interference
and strength in the explanation of the problem size effect
in addition. In a series of experiments, Zbrodoff investi-
gated the idea that addition problems interfere with one
another and that problems with a stronger memory trace
are more resistant to this interference. Participants were
trained to do alphabet addition, similar to the alphaplica-
tion task used by Graham and Campbell (1992). Differen-
tial problem frequencies produced the problem size effect
only at low levels of practice, and not after training was
complete. Interference between problems produced the
problem size effect in final performance, but not under con-
ditions in which the problems had equal frequency. Zbrod-
off concluded that interference and strength interact to
produce the problem size effect in addition.

Exploring the Similarity Structure of 
Multiplication Problems

The network interference model predicts the errors in
mental multiplication from the similarity between multi-
plication problems. Implementing this model requires
specifying a similarity structure for multiplication prob-
lems. Campbell (1995) offered one such structure, in which
the key parameters describing problem similarity “were es-
timated by examining the normative frequencies of specific
errors” (p. 131). This approach involves making untested
assumptions about the representation of multiplication
problems, a fact that has been taken as a weakness of the
network interference model (LeFevre et al., 1996). The aim
of this paper is to address this issue by providing an em-
pirical investigation of the similarity structure of multi-
plication problems.

Campbell’s (1995; Campbell & Oliphant, 1992) network
interference model postulates two aspects of similarity be-
tween multiplication problems: physical similarity and
magnitude similarity. Physical similarity is the weighted
sum of matches between the operator (i.e., whether the two
problems both contain a multiplication sign), the operands,
and the decades and units of the response. Magnitude sim-
ilarity is a decreasing function of the difference in the so-
lutions of the two problems, relative to the size of the
larger solution. The total similarity is then the sum of the
physical similarity and the magnitude similarity. If one of
the problems involved is a tie or has five as an operand, the
total similarity is multiplied by a further parameter to re-
duce the similarity between the problems. 

Campbell’s (1995) representational assumptions pro-
vide a clear specification of the similarity structure to
which multiplication problems should adhere. Problems
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with matching operands should be more similar, the sim-
ilarity between two problems should decrease as the differ-
ence in their solutions increases, and problems involving
ties and fives should be especially similar to one another.
These assumptions can be examined with techniques de-
signed to extract representational information from simi-
larity ratings.

Multidimensional Scaling
and the Tree-Sorting Procedure

MDS is often used to provide insight into mental repre-
sentations, especially in situations in which the stimuli are
discrete, such as single-digit multiplication (e.g., Nosofsky,
1986; Shepard, 1980). Participants rate the perceived simi-
larity of different stimuli, and this information is converted
into a low-dimensional spatial representation through the
assumption that similarity is inversely related to distance
(Kruskal & Wish, 1978; Shepard, 1987). The properties of
the derived representation can then help in understanding
the psychological similarity structure of the stimuli. 

The use of MDS techniques in psychological research
is limited by the difficulty of collecting similarity ratings
for large sets of stimuli. The similarity ratings provided to the
MDS algorithm should ideally include one value for every
possible pair of stimuli. Since these values are often as-
sumed to be independent of the order of stimuli in the pair,
an MDS solution featuring n stimuli requires [n ´ (n - 1)]/2
similarity ratings. This number rapidly becomes too large
to be obtained conveniently: To scale the 64 multiplica-
tion problems between 2 ´ 2 and 9 ´ 9, 2,016 similarity
ratings are needed.

Fortunately, techniques exist that allow participants to
make only a small number of judgments and still produce
a complete set of similarity ratings. The tree-sorting task
(Fillenbaum & Rapoport, 1971) is one such technique, in
which the close correspondence between multidimensional
scaling and spanning trees is used (Shepard, 1980). Each
participant follows a set of simple instructions (presented
below) to form the stimuli into a tree, a structure that places
connections between stimuli to form a unique route from
each stimulus to every other. The placement of connections
corresponds to the perceived similarity between stimuli,
so that very similar items can be reached by traversing
only a few connections. The number of connections that
needs to be traversed to travel between stimuli is the dis-
tance between them, expressing their degree of dissimi-
larity. By averaging across participants, it is possible to
produce distances that reflect the common trends in a set
of trees: Stimuli consistently placed far apart will have
large average distances, whereas those commonly placed
together will have small average distances.

The tree-sorting task was originally used to collect sim-
ilarity judgments for the development of semantic represen-
tations (Fillenbaum & Rapoport, 1971). It has subsequently
been applied to face perception (Rhodes, 1985) and is rec-
ognized as an efficient means of dealing with large sets of
stimuli (Coxon, 1982). However, few data exist on the va-
lidity or the reliability of the results derived through this
technique. In Experiment1, we examined the reliability and

validity of the tree-sorting task. In Experiment 2, we then
used the tree-sorting task to assess the similarity structure
of multiplication problems.

EXPERIMENT 1 
The Reliability and Validity 

of the Tree-Sorting Task

One of the classic sets of stimuli to which MDS tech-
niques have been applied is the set of integers between 0
and 9. Shepard, Kilpatric, and Cunningham (1975) found
that the MDS solution for this stimulus set could be di-
vided along axes corresponding to parity and magnitude.
This result has been confirmed through a variety of exper-
imental procedures (Lewandowsky & Newman, 1993;
Miller, 1992; Miller & Gelman, 1983). Here, we examine
the reliability and validity of the tree-sorting task using these
stimuli.

Method
Participants. Two groups of 20 undergraduate psychology stu-

dents from the University of Western Australia participated for par-
tial course credit.

Materials. The 10 integers between 0 and 9 were printed on
cards, 9 cm in width and 5.5 cm in height. Each number was printed
in 72-point Times in black, on a white background.

Procedure. The participants were tested individually. Each par-
ticipant performed a number of mathematical tasks, including mul-
tiplication, factorization, computing squares, and making magnitude
comparisons, and then went on to perform the similarity rating task.
The participants were given the following instructions for the tree-
sorting task:

From the set of 10 numbers, pick the two numbers which you think are
most similar to each other. Take these two cards and place them next to
each other on the table. Now you have two options:

Option 1: You may go carefully over the remaining numbers (of which
there are now 8) and pick the number which you think is most similar to
either of the two numbers you have already selected. Move this card and
put it next to the one to which you believe it is similar. 

Option 2: You may look over the remaining numbers and decide that two
of them are more similar to each other than any one of them is to either
of the two numbers already selected. If so, you may select these numbers
and place their cards next to one another, just as you did with the first
pair.

After taking Option 1 or 2, proceed in exactly the same way. Search over
the remaining numbers and choose Option 1 or Option 2. When you take
Option 1 you add a number to an already linked group of numbers
(which is called a tree). When you take Option 2 you start a new tree. 

As the experiment proceeds, a new option becomes available:

Option 3: If you find that you have made several trees, you may want to
connect any two of them together. If you find two numbers, on two sep-
arate trees, that are more similar to each other than any other two num-
bers are to each other, you should move these cards next to each other,
linking the trees.

The participants were directed to use these options repeatedly, until
all 10 cards were used and a single tree remained. The 10 cards were
then shuffled and placed in front of the participant, who formed
them into a tree so that each integer could be reached from every
other integer. The experimenter noted the order of the connections.

Results and Discussion
Inspection of the data showed that no participants

formed linear trees determined solely by magnitude. A tri-
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angular 10 ́ 10 distance matrix was formed for each par-
ticipant by summing the ordered connections between all
the items. The matrices thus derived were then averaged to
form an aggregate distance matrix for each group. In
forming the aggregate matrices, it was observed that the
means and variances of the distances were related. The rela-
tionship between the logarithms of the means and the stan-
dard deviations was examined and found to be linear.
Rhodes (1985) obtained a similar result, using the tree-
sorting task, and transformed the data so that y = x (1-b),
where b is the slope of the regression line. The regression
of log (SD) on log (M ) yielded r (43) = .10, where b = 0.10
for the first group, and r(43) = .75, b = 0.60 for the sec-
ond. Following the transformation, r 2(43) = .003 and
r2(43) = .0001, respectively.

The average distances for the two groups were correlated,
yielding r (43) = .80. Applying the Spearman–Brown cor-
rection for split-half reliability, the corrected reliability for
the whole set is r = .89. The high correlation between the
derived distances supports the reliability of the tree-sorting
task. The aggregate matrix for the first group was supplied
to the ALSCAL algorithm. Stimulus configurations above
three dimensions incorporated more free parameters than
the data had degrees of freedom and were not examined.
The two-dimensional solution provided clearly inter-
pretable dimensions corresponding to magnitude and par-
ity, with a stress of .072. The resulting representation thus
had the same properties as those found in previous re-
search (Lewandowsky & Newman, 1993; Miller, 1992;
Miller & Gelman, 1983; Shepard et al., 1975), supporting
the validity of the tree-sorting task.

EXPERIMENT 2 
Deriving a Similarity Structure for 

Multiplication Problems

Method
Participants. The participants were 20 undergraduate psychol-

ogy students from the University of Western Australia, participating
for partial course credit.

Materials. The 64 problems between 2 ́ 2 and 9 ́ 9 were printed
on cards, 9 cm in width and 5.5 cm in height, with the same proper-
ties as the cards in Experiment 1.

Procedure. The participants were tested individually. Each par-
ticipant was asked to go through the stack of randomly shuffled
cards and say aloud the answer to each problem. They then received
instructions for the tree-sorting task, emphasizing the importance of
rating the abstract similarity of the problems, rather than their phys-
ical resemblance. The cards were shuffled again, and 16 cards were
selected. The participants performed the tree-sorting task on this re-
duced stimulus set, as a means of illustrating the demands of the
task. The cards were collected, shuffled back into the deck, and the full
set of cards was spread out on a table in an 8 ´ 8 grid. Following the
rules of the task, the participants arranged the stimuli according to
the similarity between them: Pairs of similar items were selected
until all the stimuli were linked, and the order of choice was recorded. 

Results and Discussion
A triangular 64 ´ 64 distance matrix was formed for

each subject by summing the ordered connections be-
tween all the items. The matrices thus derived were then av-
eraged to form an aggregate distance matrix. The regression
of log (SD) on log (M ) yielded b = 0.53, with r(2,014) =
.56. The exponential transformation used in Experiment 1
produced r 2(2,014) = .03. In order to check the reliability
of the data, the 20 matrices were randomly split into two

Figure 1. Problem locations on the first dimension of the five-dimensional
multidimensional scaling solution found in Experiment 2, as a function of prob-
lem solution. This dimension appears to correspond to solution magnitude.
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groups, and group aggregates were derived. The aggre-
gate matrices were correlated against each other, yielding
r(2,014) = .55. Applying the Spearman–Brown correction
gave a final r(2,014) = .67. Although low, this value is
comparable with similar indices reported in other research
using this method (e.g., Rhodes, 1985).1

The aggregate matrix was supplied to the ALSCAL al-
gorithm to derive an MDS representation of the stimuli.
Stimulus configurations were derived for between two and
six dimensions. The stress values were 0.24, 0.17, 0.13,
0.10, and 0.09, for two to six dimensions, respectively,

showing no points of inflection. Since our primary con-
cern was with the similarity of problems that share an
operand, we chose the representation that best preserved
the mean distance between the members of each operand
family. These mean distances were computed for the raw
data and for each MDS solution. The mean distances in
the five-dimensional solution best matched the raw dis-
tances, yielding r(6) = .92. The first dimension of the de-
rived solution was related to the magnitude of the solution
to the problem [r (62) = .81, p < .0001], as can be seen in
Figure 1. The other four dimensions were involved in

Figure 2. The remaining four dimensions of the multidimensional scaling so-
lution derived in Experiment 2. To illustrate the way in which they code for
problem operands, the dimensions were rotated to maximize the mean of each
operand family along one dimension and minimize it along the other three
while retaining orthogonality. Only those problems separated by the axes of
each graph are displayed.
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coarsely coding the operands of the problems. Figure 2
shows that these dimensions separate problems contain-
ing 9 as an operand from those containing 6 as an operand,
4 from 3, 7 from 8, and 2 from 5, respectively.

To aid in the interpretation of the five-dimensional so-
lution, a linear model of the set of derived distances was gen-
erated, with factors coding for particular characteristics of
the relationship between problems. The factors were com-
mute, coding for commutative pairs (e.g., 3 ́ 4 and 4 ́ 3);
tie, coding for whether the two problems were both ties;
magnitude, the difference in magnitudes between the two
problems; and two to nine, coding for the presence of a par-
ticular operand in both problems. A dummy coding scheme
was used for all binary factors, in which each predictor was
assigned a value of 1 if a pair of problems possessed the
target attribute and 0 otherwise. The resulting parameter
values are reported in Table 1. The regression model gave
R(11, 2004) = .62, p < .0001.2

The parameters of the linear model increase slightly for
factors two to four, then decrease sharply. This trend can be
reflected by correlating each parameter against the mag-
nitude of the operand family to which it refers [r(6) = .77
for all eight operands and r(4) = .97 for the last six].3 The
negative parameters observed for all the operands support
increased similarity between problems sharing operands.
However, Campbell’s (1995) claim that problems with 5 as
an operand should show the greatest similarity to one an-
other is not supported by the data. In fact, similarity grad-
ually decreases for problems featuring 2, 3, or 4 as an
operand and then increases sharply as a function of
operand magnitude.4

The parameters of the linear model also suggest that
commutative pairs are closer together than would be ex-
pected on the basis of a match between their operands alone.
This is consistent with Campbell’s (1995) notion of mag-
nitude similarity, which is maximized for commutative
pairs. The magnitude of the difference between solutions
contributes to the distance between problems, large dis-
tances being associated with problems being further apart,

a result that is also consistent with the basic idea of mag-
nitude similarity in the network interference model. Finally,
the derived representation supports the assertion that tie
problems should be categorically distinct from nonties,
showing greater similarity to other tie problems than to
nontie problems. The negative ties parameter in the linear
model is consistent with tie problems being separated by
a lower than average distance.

MODELING THE EFFECTS OF 
SIMILARITY AND FREQUENCY

The MDS solution found in Experiment 2 shows a qual-
itative correspondence to the assumptions of Campbell
(1995). The MDS approach pursued in this paper also pro-
vides the opportunity for the exploration of the quantita-
tive properties of this representation. The question of how
spatial representations can be mapped onto behavior has
been thoroughly investigated in the literature of cognitive
psychology (e.g., Shepard, 1987), resulting in models
such as Nosofsky’s (1986, 1991a) generalized context
model (GCM). The GCM has been applied to a number of
cognitive domains, including stimulus identification (No-
sofsky, 1986), categorization (Nosofsky, 1987), recogni-
tion memory (Nosofsky, 1991b), and category learning
(Kruschke, 1992). Use of the GCM to predict errors in men-
tal multiplication provides the opportunity to gain further
insight into the properties of the derived representation.

The simplest version of the GCM takes the similarity
between stimuli i and j, hij, to be an exponentially decreas-
ing function of the Euclidean distance between i and j, hij =
exp(-c dij), where c is the specificity of the similarity func-
tion. The distances, dij , are computed from a multidimen-
sional representation in which the weight of each dimension
is set by a parameter wk , with the constraint that Swk = 1.
The response selection process uses these similarity val-
ues, although the exact procedure varies according to the
task being modeled. When there is a single response for
each stimulus, as in mental multiplication, the activation
of the jth response on a trial in which stimulus i is pre-
sented, aj, is simply the similarity between i and j, hij.These
activations are converted into response probabilities via a
choice rule. Kruschke (1992) endorses an exponentiated
version of Luce’s (1963) choice rule, taking the form

(1)

where P(Rj |Si) is the probability of response j given stimu-
lus i, F is a parameter setting the sensitivity of the response
selection process to similarity values and bj is the bias as-
sociated with response j.

The bj parameters, which describe the bias toward a par-
ticular response, have a natural interpretation in the con-
text of mental multiplication. Since these parameters are
multipliers for the activation of problems, they determine
the extent to which each problem is resistant to interfer-
ence. This is essentially the role of strength, as described by
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Table 1 
Parameter Values for the Linear Model 

of the Distances Between Problems

Standard 
Factor Slope Parameter Error

(Intercept) 2.935 0.034
Commute -0.638 0.150
Tie -1.417 0.140
Two -0.536 0.078
Three -0.445 0.077
Four -0.201 0.077
Five -0.262 0.076
Six -0.430 0.075
Seven -0.951 0.075
Eight -0.982 0.075
Nine -1.188 0.075
Magnitude 0.019 0.001

Note—The mean distance between problems was 3.05. All factors were
statistically significant at a = .01.
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Ashcraft and Christy (1995) and by Zbrodoff’s (1995) for-
mulation of the interaction between strength and interfer-
ence. The relationship between problem strength and fre-
quency of presentation can be incorporated into the model
by making the bj parameters proportional to problem fre-
quency.

The use of the GCM thus provides the opportunity to
examine the relative contributions of problem similarity,
expressed in terms of the MDS solution derived in Exper-
iment 2, and problem frequency, reflected in the bj para-
meters. Models that differ in their parameters also allow
the assessment of whether each parameter makes a statis-
tically significant contribution to the fit of the model to data,
just as in multiple linear regression. Examining the con-
tributions of the parameters associated with similarity and
frequency can thus help us gain insight into the role of these
factors in producing errors. 

In order to test our statistical models, we require a set
of data to which the models can be fit and an appropriate
metric of model performance. Campbell (1994) reported
frequencies of integer responses to multiplication prob-
lems between 2 ́ 2 and 9 ́ 9, presented either as digits (e.g.,
2 ́ 2) or as words (e.g., two ́ two). These frequencies came
from 64 participants giving four responses to nontie prob-
lems and eight responses to ties. We chose to use the data
from problems presented as digits, since these were the
stimuli for the MDS procedure. These data demonstrate the
two major phenomena of mental multiplication perfor-
mance: the problem size effect and the classification of
errors.

The problem size effect and the classification of errors
can be captured by collapsing the set of response frequen-
cies into four categories for each problem, representing cor-
rect responses, operand errors, table errors, and nontable
errors. This forms a 64 ́ 4 contingency table, the 64 rows
corresponding to the 64 problems between 2 ́ 2 and 9 ́ 9
and the four columns representing the category of response.
Given such a table, G 2 is a suitable lack-of-fit statistic
(Wickens, 1989). However, the use of multiple responses
gathered from participants in a single testing session vio-
lates the assumption of independence underlying c2 tests,
given the observation of practice effects and response prim-
ing in solving multiplication problems (Meagher & Camp-
bell, 1995; Rickard, Healy, & Bourne, 1994; Stazyk et al.,
1982). Wickens (1989) recommends the use of G 2/k for this
situation, where k represents the number of scores in each
related group. Thus, the frequencies were divided by the
number of responses given by each participant for each
problem, four for nonties and eight for ties. The error
columns also contain a large number of zero values, which
can reduce the accuracy of the G 2 statistic. Since most
small values occur in the nontable errors column, this col-
umn was removed from the contingency table, reducing it
to 64 ´ 3. The contingency table still contained 41 cells
with zero values. In order to avoid a disproportionate ef-
fect of these cells on the results, a value of 0.01 was added
to all cells, chosen to be less than one tenth the size of the
smallest observed frequency. All reported G 2 and c2 val-
ues have N = 4,086.8.

Four models were fit to this data. The first model pro-
vided a baseline for assessing the contributions of other
factors, taking the similarity between problems to be equal
and setting the bj to be uniform. The second and third mod-
els assessed the effects of similarity and problem frequency
independently, whereas the fourth model examined the con-
sequences of including both these factors. The optimal pa-
rameter values and fits for these models are given in
Table 2. In addition to the G 2 value, the table reports the re-
sult of a c2 test for homogeneity conducted on the model
predictions, which reflects the strength of the problem size
effect in these data, and the relative proportions of correct
responses, operand errors, and table errors. The final col-
umn shows these same quantities computed directly from
the modified contingency table representing the data.

As might be expected, the baseline model gave a poor
fit to the data, failing to capture the appropriate frequen-
cies of errors and showing extremely homogenous pre-
dictions across problems. Introducing the effect of prob-
lem frequency to this model resulted in little improvement,
although the predictions did show a weak problem size ef-
fect, reflected in the higher c2 score. The effect of prob-
lem frequency was implemented by setting the bj parame-
ters, using frequencies from Ashcraft and Christy’s (1995)
assessment of elementary school textbooks, summing over all
grades. The bj values were generated by normalizing bj =
f j

g, where fj is the raw frequency of the jth problem and g
is a free parameter that was optimized. The introduction of
problem frequency in this fashion resulted in a significant
improvement in the fit of the model over baseline [G 2(1) =
42.38, p < .01].

The effect of similarity was examined in a model with
the bj uniform, but with distances determined by the MDS
solution derived in Experiment 2. This required the intro-
duction of six new parameters to the baseline model: the
c parameter and the weights for the five dimensions of the
space, wk. The resulting model gave better predictions of
the relative frequencies of errors, as well as showing evi-
dence of a weak problem size effect, reflected in the higher
c2 value. The introduction of these additional parameters
resulted in a significant improvement in fit over the base-
line model [G 2(5) = 68.84, p < .01].

Table 2 
Parameter Values and Fit Statistics for Variants 

of the Generalized Context Model

Parameters and Factors in Model

Fit Statistics Baseline Frequency Similarity Both (Data)

F 751.51 767.35 569.97 551.78 –
g – 0.117 – 0.153 –
c – – 4.39 5.07 –
w1 – – 0.32 0.33 –
w2 – – 0.23 0.28 –
w3 – – 0.06 0.09 –
w4 – – 0.18 0.17 –
G2 286.79 244.41 207.95 186.24 –
df 127 126 122 121
c2(126) 2.73 54.28 75.71 117.65 201.29
P(Correct) .965 .965 .964 .964 .965
P(Operand) .014 .013 .023 .022 .030
P(Table) .021 .022 .013 .014 .005
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Finally, the model incorporating both similarity deter-
mined by the MDS solution and problem frequency in the
response biases gave the best overall account of the data.
The predictions of this model accounted for error fre-
quencies in a fashion comparable with similarity alone but
showed a problem size effect much stronger than either of
the models incorporating just one of these factors. The in-
troduction of the parameters implementing the effects of
similarity resulted in a significant improvement in fit over
the model with frequency alone [G 2(5) = 58.17, p < .01],
and the introduction of the effect of frequency resulted in
a significant improvement in fit over the model with sim-
ilarity alone [G 2(1) = 21.71, p < .01]. 

The results of the model fitting suggest that similarity
and problem frequency make complementary contribu-
tions to errors in mental multiplication. Using problem fre-
quency to set the response biases of a model in which prob-
lems were equally similar improved the prediction of the
problem size effect but gave a poor account of the relative
frequency of different types of errors. Using the represen-
tation derived in Experiment 2 to determine similarity was
sufficient to produce appropriate error frequencies, but
only a weak problem size effect. Incorporating problem
frequency into the model with the appropriate similarity
structure resulted in the best overall account of the data,
including the prediction of a problem size effect much
stronger than that given by the models incorporating each
factor alone.

GENERAL DISCUSSION

The aim of this paper was to investigate the properties
of the representation used by adults in solving simple mul-
tiplication problems. One important aspect of this investi-
gation was to address the acceptability of the representational
assumptions of Campbell’s (1995) network interference
model. In Experiment 1, we examined the validity and re-
liability of the tree-sorting task, a particular method for col-
lecting ratings for the purposes of MDS. In Experiment 2,
we used the tree-sorting task to derive a spatial represen-
tation of the similarity between multiplication problems.
This representation showed a reasonably strong corre-
spondence to the kind of structure that might be expected
if Campbell’s (1995) assumptions are valid. In order to ob-
tain a better understanding of the derived similarity struc-
ture, a simple model was used to evaluate the effects of
similarity and problem frequency on errors. The model
fitting suggested that both factors can contribute to an ac-
count of multiplication performance, with complementary
effects.

The present results provide some insight into the repre-
sentational structure underlying multiplication problems.
It appears that the kind of representation assumed by
Campbell (1995) is consistent with the results of applying
MDS to similarity ratings of multiplication problems.
Most strikingly, the derived solution includes dimensions
that separate operand families into individual clusters in

the derived space. The linear model of the derived distances
supports Campbell’s (1995) assumptions, indicating less
distance between problems sharing operands, commutative
pairs, and tie problems. The effect of response magnitude
in the MDS solution is also consistent with the inclusion
of magnitude similarity in the network interference model.

The model fitting suggests that the derived representa-
tion is sufficient to produce a weak problem size effect,
with some influence of problem magnitude on errors. How-
ever, the extent to which error frequency deviates from 
homogeneity is not as great as that in the human data. This
result needs to be reconciled with Campbell’s (1995) find-
ing that incorporating magnitude similarity in the network
interference model was sufficient to produce the problem
size effect. There are three factors that could contribute to
this difference in results: the properties of the derived rep-
resentation, the choice of fit metric, and the limitations of
the modeling assumptions.

Two differences between the derived representation and
that predicted by Campbell’s (1995) account are the lack
of special similarity for problems in the five operand fam-
ily and the nonmonotonicity in the average distance between
problems in a given operand family. Although the average
distance between problems generally decreases with
operand magnitude, the reversal of this trend with small
operands can complicate the production of the problem
size effect. Essentially, models are forced into a compro-
mise between making too many errors with small operands
and making too few with large operands, resulting in an
artificial homogeneity on responses.

The predicted response frequencies resulting from the
recovered similarity structure are, in part, a result of the
use of a global fit metric like G 2, which forces every cell
in the contingency table to make a contribution to the final
fit. Our model-fitting procedure evaluates how well the
model accounts for the data represented by the entire con-
tingency table and then checks for the presence of the ap-
propriate error frequencies and the problem size effect. In
contrast, Campbell (1995) used the network interference
model to reproduce selected empirical phenomena. Opti-
mizing the current models to capture such phenomena
might produce a stronger problem size effect, at the cost of
accuracy in reproducing other specific error frequencies.

Finally, although the models considered provided the
opportunity to implement a simple account of the interac-
tion between similarity and problem frequency, they did
not take into account several important aspects of adult
performance on multiplication problems. Specifically, no
attempt was made to account for response time data, and
several known phenomena of cognitive arithmetic were ne-
glected, including operand intrusions and interoperation
confusions (cf. Campbell, 1994). 

Beyond the direct implications for the network interfer-
ence model, the present results provide information that is
relevant to other theories of cognitive arithmetic. The results
of the model fitting are consistent with the claims of Ashcraft
and Christy (1995) about the importance of problem strength
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in explaining performance on mental arithmetic problems.
Despite the deviations from monotonicity in the effect of
operand matches and any constraints imposed by the fit met-
ric, using frequency to modulate the effects of interference
improved the fit of the model. This suggests that although
similarity may contribute to the problem size effect, the
magnitude of the effect may also be due to the influence
of problem strength. This result parallels Zbrodoff’s (1995)
claim that the explanation of adult errors on addition prob-
lems involves an interaction between problem strength
and interference.

Despite extensive practice, adults consistently produce
errors on simple multiplication problems. One prominent
explanation for these errors rests on the similarity structure
of multiplication problems, formalized in Campbell’s (1995)
network interference model. In this paper, we investigated
the representation underlying multiplication through the ap-
plication of MDS techniques and computational model-
ing. The empirically derived similarity structure was largely
consistent with the assumptions of the network interfer-
ence model and produced appropriate frequencies of dif-
ferent kinds of errors. Simulations showed that this repre-
sentation produced appropriate error frequencies and a
weak problem size effect, although the strength of the prob-
lem size effect could be increased by allowing the effect
of similarity to be modulated by problem frequency. These
results provide further support for the development of in-
tegrated theories of cognitive arithmetic, focusing on the
interaction between explanatory factors such as interfer-
ence and problem strength.
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NOTES

1. As a further check of the reliability of the results, the simulations de-
scribed below were run with MDS solutions derived from these split data
sets. The conclusions drawn were unchanged by which solution was used.

2. The R value is a poor index of the importance of these factors be-
cause of the nature of the distance data. Points in a metric space obey the
triangle inequality—the distance between two points is less than or equal
to the sum of the distances of those points to a third point. This structural
limitation implies that points can be close together despite having no
shared characteristics, if they each share some characteristics with a third
point. The regression model does not account for these relationships. 

3. The authors are grateful to Jamie Campbell for making this obser-
vation.

4. This nonmonotonic change in intrafamily distances was also ob-
servable in the mean distances within the corresponding operand families.
It was not a consequence of the derived representation that was selected,
since it appeared in the distances for the raw data and all MDS solutions.
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