
Part II: How to make a Bayesian model



Questions you can answer…

• What would an ideal learner or observer infer
from these data?

• What are the effects of different assumptions or
prior knowledge on this inference?

• What kind of constraints on learning are
necessary to explain the inferences people make?

• How do people learn a structured representation?



Marr’s three levels
Computation

   “What is the goal of the computation, why is it
appropriate, and what is the logic of the strategy by
which it can be carried out?”

Representation and algorithm
   “What is the representation for the input and output,

and the algorithm for the transformation?”

Implementation
   “How can the representation and algorithm be realized

physically?”



Six easy steps
Step 1: Find an interesting aspect of cognition

Step 2: Identify the underlying computational problem

Step 3: Identify constraints

Step 4: Work out the optimal solution to that problem,
given constraints

Step 5: See how well that solution corresponds to human
behavior (do some experiments!)

Step 6: Iterate Steps 2-6 until it works

(Anderson, 1990)



A schema for inductive problems

• What are the data?
– what information are people learning or drawing

inferences from?
• What are the hypotheses?

– what kind of structure is being learned or inferred
from these data?

(these questions are shared with other models)



Thinking generatively…
• How do the hypotheses generate the data?

– defines the likelihood p(d|h)
• How are the hypotheses generated?

– defines the prior p(h)
– while the prior encodes information about knowledge

and learning biases, translating this  into a probability
distribution can be made easier by thinking in terms of
a generative process…

• Bayesian inference inverts this generative process



An example: Speech perception

(with thanks to Naomi Feldman )
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Bayes for speech perception
Listeners must invert the process that generated
the sound they heard…

– data (d): speech sound S
– hypotheses (h): target productions T
– prior (p(h)): phonetic category structure p(T|c)
– likelihood (p(d|h)): speech signal noise p(S|T)

( ) ( ) ( )hphdpdhp || !
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Bayes for speech perception
Listeners must invert the process that generated
the sound they heard…

– data (d): speech sound S
– hypotheses (h): phonetic category c
– prior (p(h)): probability of category p(c)
– likelihood (p(d|h)): combination of category

variability p(T|c) and speech signal noise p(S|T)

! 

p(S | c) = p(S |T)p(T | c)dT"



Challenges of generative models

• Specifying well-defined probabilistic models
involving many variables is hard

• Representing probability distributions over
those variables is hard, since distributions need
to describe  all possible  states of the variables

• Performing Bayesian inference using those
distributions is hard



Graphical models

• Express the probabilistic dependency
structure among a set of variables (Pearl, 1988)

• Consist of
– a set of nodes, corresponding to variables
– a set of edges, indicating dependency
– a set of functions defined on the graph that

specify a probability distribution



Undirected graphical models

• Consist of
– a set of nodes
– a set of edges
– a potential for each clique, multiplied together to

yield the distribution over variables
• Examples

– statistical physics: Ising model, spinglasses
– early neural networks (e.g. Boltzmann machines)
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Directed graphical models
X3 X4

X5

X1

X2

• Consist of
– a set of nodes
– a set of edges
– a conditional probability distribution for each

node, conditioned on its parents, multiplied
together to yield the distribution over variables

• Constrained to directed acyclic graphs (DAGs)
• Called Bayesian networks or Bayes nets



Statistical independence
• Two random variables X1 and X2 are independent if

P(x1|x2) = P(x1)
– e.g. coinflips: P(x1=H|x2=H) = P(x1=H) = 0.5

• Independence makes it easier to represent and
work with probability distributions

• We can exploit the product rule:

! 
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If x1, x2, x3, and x4 are all independent…



The Markov assumption

  Every node is conditionally independent of its non-
descendants, given its parents
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Representing generative models

• Graphical models provide solutions to many
of the challenges of probabilistic models
– defining structured distributions
– representing distributions on many variables
– efficiently computing probabilities

• Graphical models also provide an intuitive
way to define generative processes…



Graphical model for speech
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Graphical model for speech
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Graphical model for speech
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Performing Bayesian calculations

• Having defined a generative process you are
ready to invert that process using Bayes’ rule

• Different models and modeling  goals require
different methods…
– mathematical analysis
– special-purpose computer programs
– general-purpose computer programs



Mathematical analysis

• Work through Bayes’ rule by hand
– the only option available for a long time!

• Suitable for simple models using a small
number of hypotheses and/or conjugate priors



One phonetic category
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One phonetic category

Bayes’ rule:

Prior:

Phonetic category ‘c’

Likelihood:

Speech signal noise
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One phonetic category

This can be simplified to a Gaussian distribution:

Speech
sound S



One phonetic category

Which has the
expectation (mean):

[ ]
22

22

|
Sc

cSc
S

STE

!!

µ!!

+

+
=

Speech
sound S



Perceptual warping

Perception of speech sounds is pulled toward the
mean of the phonetic category

(shrinks perceptual space)

Actual stimulus

Perceived stimulus



Mathematical analysis

• Work through Bayes’ rule by hand
– the only option available for a long time!

• Suitable for simple models using a small
number of hypotheses and/or conjugate priors

• Can provide conditions on conclusions or
determine the effects of assumptions
– e.g. perceptual magnet effect
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Characterizing perceptual warping
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Mathematical analysis

• Work through Bayes’ rule by hand
– the only option available for a long time!

• Suitable for simple models using a small
number of hypotheses and/or conjugate priors

• Can provide conditions on conclusions or
determine the effects of assumptions
– e.g. perceptual magnet effect

• Lots  of  useful  math: calculus, linear algebra,
stochastic  processes, …



Special-purpose computer programs

• Some models are best analyzed by implementing
tailored numerical algorithms

• Bayesian inference for low-dimensional
continuous hypothesis spaces (e.g.the perceptual
magnet effect) can be approximated discretely

multiply p(d|h) and p(h)  at each site
normalize over vector



Multiple phonetic categories

SSpeech
sound



Special-purpose computer programs

• Some models are best analyzed by implementing
tailored numerical algorithms

• Bayesian inference for large discrete hypothesis
spaces (e.g. concept learning) can be
implemented efficiently using matrices



Bayesian concept learning

What rule describes the species that these
amoebae belong to?

data hypotheses



Concept learning experiments

data (d)

hypotheses (h)



Bayesian model
(Tenenbaum, 1999; Tenenbaum & Griffiths, 2001)
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Special-purpose computer programs

• Some models are best analyzed by implementing
tailored numerical algorithms

• Bayesian inference for large discrete hypothesis
spaces (e.g. concept learning) can be
implemented efficiently using matrices
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Fitting the model
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Classes of concepts
(Shepard, Hovland, & Jenkins, 1961)

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

shape

size

color



Fitting the model

Class 1
Class 2

Class 3

Class 4

Class 5

Class 6

0.861
0.087

0.009

0.002

0.013

0.028

Prior

r = 0.952

Bayesian modelHuman subjects



Special-purpose computer programs

• Some models are best analyzed by implementing
tailored numerical algorithms

• Another option is Monte Carlo approximation…
• The expectation of f with respect to p can be

approximated by

   where the xi are sampled from p(x)
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General-purpose computer programs
• A variety of software packages exist for

performing Bayesian computations
– Bayes Net Toolbox for Matlab
– BUGS (Bayesian inference Using Gibbs Sampling)
– GeNIe and SamIAm (graphical interfaces)
– See the giant list at

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html
• Most packages require using a graphical model

representation (which isn’t always easy)



Six easy steps
Step 1: Find an interesting aspect of cognition

Step 2: Identify the underlying computational problem

Step 3: Identify constraints

Step 4: Work out the optimal solution to that problem,
given constraints

Step 5: See how well that solution corresponds to human
behavior (do some experiments!)

Step 6: Iterate Steps 2-6 until it works

(Anderson, 1990)



The perceptual magnet effect

Compare two-category model for categories
/i/ and /e/ with data from Iverson and Kuhl’s
(1995) multidimensional scaling analysis

– compute expectation E[T|S] for each stimulus
– subtract expectations for neighboring stimuli



Parameter estimation

• Assume equal prior probability for /i/ and /e/
(Tobias, 1959)

• Estimate μ/i/ from goodness ratings
(Iverson & Kuhl, 1995)

• Estimate μ/e/ and the quantity (σc2+σS2) from
identification curves

(Lotto, Kluender, & Holt, 1998)

• Find the best-fitting ratio of category variance σc2
to speech signal uncertainty σS2



Parameter values

μ/i/: F1: 224 Hz
   F2: 2413 Hz

μ/e/: F1: 423 Hz
    F2: 1936 Hz

σc: 77 mels

σS: 67 mels

Stimuli from Iverson and Kuhl (1995)

F2
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/i/

/e/



Quantitative analysis
Relative Distances Between Neighboring Stimuli

Stimulus Number
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Quantitative analysis
Relative Distances Between Neighboring Stimuli

Stimulus Number

r = 0.97
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Empirical predictions
Amount of warping depends on ratio of speech signal noise to category variance:



Results
*

p<0.05 in a permutation test based on the log ratio of between/within category distances



Summary
• Bayesian models can be used to answer

several questions at the computational level
• The key to defining a Bayesian model is

thinking in terms of generative processes
– graphical models illustrate these processes
– Bayesian inference inverts these processes

• Depending on the question and the model,
different tools can be useful in performing
Bayesian inference (but it’s usually easy for
anything expressed as a graphical model)





    Assume grass will be wet if and only if it rained last
night, or if the sprinklers were left on:
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Rain Sprinkler

Grass Wet

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

)(

)()|(
)|(

wP

rPrwP
wrP =

Compute probability it
rained last night, given
that the grass is wet:

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

!
""

""""
=

sr

srPsrwP

rPrwP
wrP

,

),(),|(

)()|(
)|(

Compute probability it
rained last night, given
that the grass is wet:

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

),(),(),(

)(
)|(

srPsrPsrP

rP
wrP

¬+¬+
=

Compute probability it
rained last night, given
that the grass is wet:

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

Compute probability it
rained last night, given
that the grass is wet:

),()(

)(
)|(

srPrP

rP
wrP

¬+
=

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

)()()(

)(
)|(

sPrPrP

rP
wrP

¬+
=

Compute probability it
rained last night, given
that the grass is wet:

Between 1 and P(s)

)(rP>

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
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Compute probability it
rained last night, given
that the grass is wet and
sprinklers were left on:

)|(

)|(),|(
),|(

swP

srPsrwP
swrP =

Both terms = 1

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

Compute probability it
rained last night, given
that the grass is wet and
sprinklers were left on:

)(rP=)|(),|( srPswrP =

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



Explaining away
Rain Sprinkler

Grass Wet

)(rP=)|(),|( srPswrP =

)()()(

)(
)|(

sPrPrP

rP
wrP

¬+
= )(rP>

“Discounting” to 
prior probability.

.andif0 sSrR ¬=¬==

),|()()(),,( RSWPSPRPWSRP =

rRsSRSwWP ==== orif1),|(



• Formulate IF-THEN rules:
– IF Rain THEN Wet
– IF Wet THEN Rain

• Rules do not distinguish directions of inference
• Requires combinatorial explosion of rules

Contrast w/ production system
Rain

Grass Wet

Sprinkler

IF Wet AND NOT Sprinkler 
THEN Rain



• Observing rain, Wet becomes more active.
• Observing grass wet, Rain and Sprinkler become

more active
• Observing grass wet and sprinkler, Rain cannot

become less active.  No explaining away!

• Excitatory links: Rain        Wet, Sprinkler        Wet

Contrast w/ spreading activation
Rain Sprinkler

Grass Wet



• Observing grass wet, Rain and Sprinkler become
more active

• Observing grass wet and sprinkler, Rain becomes
less active: explaining away

• Excitatory links: Rain        Wet, Sprinkler        Wet
• Inhibitory link: Rain       Sprinkler

Contrast w/ spreading activation
Rain Sprinkler

Grass Wet



• Each new variable requires more inhibitory connections
• Not modular

– whether a connection exists depends on what others exist
– big holism problem
– combinatorial explosion

Contrast w/ spreading activation
Rain

Sprinkler

Grass Wet

Burst pipe



Contrast w/ spreading activation

(McClelland & Rumelhart, 1981)




