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Outline
• Morning

– 9:00-10:30: Introduction: Why Bayes?; Basics of
Bayesian inference (Josh)

– 11:00-12:30: How to build a Bayesian cognitive
model (Tom)

• Afternoon
– 1:30-3:00: Hierarchical Bayesian models and

learning structured representations (Charles)
– 3:30-5:00: Monte Carlo methods and

nonparametric Bayesian models (Tom)



What you will get out of this tutorial
• Our view of what Bayesian models have to offer

cognitive science
• In-depth examples of basic and advanced

models: how the math works & what it buys you
• A sense for how to go about the process of

building Bayesian models
• Some (not extensive) comparison to other

approaches
• Opportunities to ask questions



The big question
How does the mind get so much out of so

little?

Our minds build rich models of the world and make strong
generalizations from input data that is sparse, noisy, and
ambiguous – in many ways far too limited to support the
inferences we make.

How do we do it?



Learning words for objects



Learning words for objects
“tufa”

“tufa”

“tufa”



The big question
How does the mind get so much out of so

little?
– Perceiving the world from sense data
– Learning about kinds of objects and their properties
– Inferring causal relations
– Learning and using words, phrases, and sentences
– Learning and using intuitive theories of physics,

psychology, biology, …
– Learning social structures, conventions, and rules

The goal: A general-purpose computational
   framework for understanding how people make
   these inferences, and how they can be successful.



The problem of induction
Abstract knowledge.
   (Constraints / Inductive bias / Priors)



The problems of induction
1. How does abstract knowledge guide inductive

learning, inference, and decision-making from sparse,
noisy or ambiguous data?

2. What is the form and content of our abstract
knowledge of the world?

3. What are the origins of our abstract knowledge?  To
what extent can it be acquired from experience?

4. How do our mental models grow over a lifetime,
balancing simplicity versus data fit (Occam),
accommodation versus assimilation (Piaget)?

5. How can learning and inference proceed efficiently
and accurately, even in the presence of complex
hypothesis spaces?



A toolkit for reverse-engineering induction
1. Bayesian inference in probabilistic generative models
2. Probabilities defined on a range of structured

representations: spaces, graphs, grammars, predicate
logic, schemas, programs.

3. Hierarchical probabilistic models, with inference at all
levels of abstraction

4. Models of unbounded complexity (“nonparametric
Bayes” or “infinite models”), which can grow in
complexity or change form as observed data dictate.

5. Approximate methods of learning and inference, such
as belief propagation, expectation-maximization (EM),
Markov chain Monte Carlo (MCMC), and sequential
Monte Carlo (particle filtering).
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Phrase structure

Utterance

Speech signal

Grammar

“Universal Grammar” Hierarchical phrase structure
grammars (e.g., CFG, HPSG, TAG)

P(phrase structure | grammar)

P(utterance | phrase structure)

P(speech | utterance)

P(grammar | UG)



(Han and Zhu, 2006)

Vision as probabilistic parsing





Principles

Structure

Data

Whole-object principle
Shape bias
Taxonomic principle
Contrast principle
Basic-level bias

Learning word meanings



Causal learning and reasoning

Principles

Structure

Data



Goal-directed action
(production and comprehension)

(Wolpert et al., 2003)



Why Bayesian models of cognition?
• A framework for understanding how the mind can solve

fundamental problems of induction.
• Strong, principled quantitative models of human cognition.
• Tools for studying people’s implicit knowledge of the world.
• Beyond classic limiting dichotomies: “rules vs. statistics”,

“nature vs. nurture”, “domain-general vs. domain-specific” .
• A unifying mathematical language for all of the cognitive

sciences: AI, machine learning and statistics, psychology,
neuroscience, philosophy, linguistics…. A bridge between
engineering and “reverse-engineering”.

Why now? Much recent progress, in computational resources,
theoretical tools, and interdisciplinary connections.



Outline
• Morning

– Introduction: Why Bayes? (Josh)
– Basics of Bayesian inference (Josh)
– How to build a Bayesian cognitive model (Tom)

• Afternoon
– Hierarchical Bayesian models and learning

structured representations (Charles)
– Monte Carlo methods and nonparametric Bayesian

models (Tom)
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Bayesian inference

• Bayes’ rule:
• An example

– Data: John is coughing
– Some hypotheses:

1. John has a cold
2. John has lung cancer
3. John has a stomach flu

– Prior P(h) favors 1 and 3 over 2
– Likelihood P(d|h) favors 1 and 2 over 3
– Posterior P(h|d) favors 1 over 2 and 3
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Plan for this lecture

• Some basic aspects of Bayesian statistics
– Comparing two hypotheses
– Model fitting
– Model selection

• Two (very brief) case studies in modeling
human inductive learning
– Causal learning
– Concept learning



Coin flipping
• Basic Bayes

– data = HHTHT or HHHHH
– compare two hypotheses:

P(H) = 0.5 vs. P(H) = 1.0

• Parameter estimation (Model fitting)
– compare many hypotheses in a parameterized family

P(H) = θ :  Infer θ

• Model selection
– compare qualitatively different hypotheses, often

varying in complexity:
P(H) = 0.5 vs. P(H) = θ



Coin flipping

HHTHT

HHHHH

What process produced these sequences?



Comparing two hypotheses

• Contrast simple hypotheses:
– h1: “fair coin”, P(H) = 0.5
– h2:“always heads”, P(H) = 1.0

• Bayes’ rule:

• With two hypotheses, use odds form
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Comparing two hypotheses

D: HHTHT
H1, H2: “fair coin”, “always heads”
P(D|H1) = 1/25  P(H1) = ? 
P(D|H2) = 0  P(H2) =  1-?
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Comparing two hypotheses

D: HHTHT
H1, H2: “fair coin”, “always heads”
P(D|H1) = 1/25  P(H1) = 999/1000 
P(D|H2) = 0  P(H2) =  1/1000
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Comparing two hypotheses

D: HHHHH
H1, H2: “fair coin”, “always heads”
P(D|H1) = 1/25 P(H1) = 999/1000
P(D|H2) = 1  P(H2) =  1/1000
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Comparing two hypotheses

D: HHHHHHHHHH
H1, H2: “fair coin”, “always heads”
P(D|H1) = 1/210 P(H1) = 999/1000
P(D|H2) = 1  P(H2) =  1/1000
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Measuring prior knowledge
1. The fact that HHHHH looks like a “mere coincidence”,

without making us suspicious that the coin is unfair, while
HHHHHHHHHH does begin to make us suspicious,
measures the strength of our prior belief that the coin is
fair.
– If θ is the threshold for suspicion in the posterior odds, and D* is

the shortest suspicious sequence, the prior odds for a fair coin is
roughly θ/P(D*|“fair coin”).

– If θ ~ 1 and D* is between 10 and 20 heads, prior odds are roughly
between 1/1,000 and 1/1,000,000.

2. The fact that HHTHT looks representative of a fair coin,
and HHHHH does not, reflects our prior knowledge about
possible causal mechanisms in the world.
– Easy to imagine how a trick all-heads coin could work: low (but

not negligible) prior probability.
– Hard to imagine how a trick “HHTHT” coin could work: extremely

low (negligible) prior probability.



Plan for this lecture

• Some basic aspects of Bayesian statistics
– Comparing two hypotheses
– Model fitting
– Model selection

• Two (very brief) case studies in modeling
human inductive learning
– Causal learning
– Concept learning



Coin flipping
• Basic Bayes

– data = HHTHT or HHHHH
– compare two hypotheses:

P(H) = 0.5 vs. P(H) = 1.0

• Parameter estimation (Model fitting)
– compare many hypotheses in a parameterized family

P(H) = θ :  Infer θ

• Model selection
– compare qualitatively different hypotheses, often

varying in complexity:
P(H) = 0.5 vs. P(H) = θ



• Assume data are generated from a
parameterized model:

• What is the value of θ ?
– each value of θ  is a hypothesis H
– requires inference over infinitely many hypotheses

Model fitting (Parameter estimation)

d1       d2       d3       d4

P(H) = θ

θ



• Assume hypothesis space of possible models:

• Which model generated the data?
– requires summing out hidden variables
– requires some form of Occam’s razor to trade off

complexity with fit to the data.

Model selection

d1 d2 d3 d4

Fair coin: P(H) = 0.5

d1 d2 d3 d4

P(H) = θ

θ

d1 d2 d3 d4

Hidden Markov model:
 si     {Fair coin, Trick coin}  !

s1 s2 s3 s4θ

ϕ



Parameter estimation vs. Model selection
across learning and development

• Causality: learning the strength of a relation vs. learning
the existence and form of a relation

• Perception: learning the strength of a cue vs. learning the
existence of a cue, in sensory cue combination

• Language acquisition: learning a speaker's accent, or
frequencies of different words vs. learning a new tense or
syntactic rule (or learning a new language, or the existence
of different languages)

• Concepts: learning what horses look like vs. learning that
there is a new species (or learning that there are species)

• Intuitive physics: learning the mass of an object vs.
learning about the existence of a force (e.g., gravity,
magnetism)



A hierarchical learning framework
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A hierarchical learning framework
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• Assume data are generated from a model:

• What is the value of θ ?
– each value of θ is a hypothesis H
– requires inference over infinitely many hypotheses

Bayesian parameter estimation

d1       d2       d3       d4

P(H) = θ

θ



•  D = 10 flips, with 5 heads and 5 tails.
•  θ = P(H) on next flip? 50%
• Why?  50% = 5 / (5+5) = 5/10.
• Why? “The future will be like the past”

• Suppose we had seen 4 heads and 6 tails.
• P(H) on next flip? Closer to 50% than to 40%.
• Why? Prior knowledge.

Some intuitions



• Posterior distribution P(θ | D) is a probability
density over θ = P(H)

• Need to specify likelihood P(D | θ ) and prior
distribution P(θ ).

Integrating prior knowledge and data
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Likelihood and prior

• Likelihood: Bernoulli distribution
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads
– NT: number of tails

• Prior:
                      P(θ ) ∝     ?



•  D = 10 flips, with 5 heads and 5 tails.
•  θ = P(H) on next flip? 50%
• Why?  50% = 5 / (5+5) = 5/10.
• Why? Maximum likelihood:

• Suppose we had seen 4 heads and 6 tails.
• P(H) on next flip? Closer to 50% than to 40%.
• Why? Prior knowledge.

Some intuitions

)|(maxargˆ !!

!

DP=



A simple method of specifying priors

• Imagine some fictitious trials, reflecting a
set of previous experiences
– strategy often used with neural networks or

building invariance into machine vision.

• e.g., F ={1000 heads, 1000 tails} ~ strong
expectation that any new coin will be fair

• In fact, this is a sensible statistical idea...



Likelihood and prior

• Likelihood: Bernoulli(θ ) distribution
P(D | θ ) =  θ NH (1-θ ) NT

– NH: number of heads observed
– NT: number of tails observed

• Prior: Beta(FH,FT) distribution
P(θ ) ∝ θ FH-1 (1-θ ) FT-1

– FH: fictional observations of heads
– FT: fictional observations of tails



Shape of the Beta prior



• Posterior is Beta(NH+FH,NT+FT)
– same form as prior!

Bayesian parameter estimation

P(θ | D) ∝ P(D | θ ) P(θ ) = θ NH+FH-1 (1-θ ) NT+FT-1



Conjugate priors
• A prior p(θ ) is conjugate to a likelihood

function p(D | θ ) if the posterior has the same
functional form of the prior.
– Parameter values in the prior can be thought of as a

summary of “fictitious observations”.
– Different parameter values in the prior and

posterior reflect the impact of observed data.
– Conjugate priors exist for many standard models

(e.g., all exponential family models)



d1       d2       d3       d4

θ

FH,FT

• Posterior predictive distribution:

D = NH,NT

P(θ | D) ∝ P(D | θ ) P(θ ) = θ NH+FH-1 (1-θ ) NT+FT-1

Bayesian parameter estimation
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P(H|θ ) P(θ | D, FH, FT) dθ

“hypothesis averaging”

dn

P(dn = H|D, FH, FT) =



d1       d2       d3       d4

θ

FH,FT

dn

• Posterior predictive distribution:

D = NH,NT

P(θ | D) ∝ P(D | θ ) P(θ ) = θ NH+FH-1 (1-θ ) NT+FT-1

Bayesian parameter estimation

(NH+FH+NT+FT)
(NH+FH)P(dn = H|D, FH, FT) =



Example: coin fresh from bank
• e.g., F ={1000 heads, 1000 tails} ~ strong

expectation that any new coin will be fair
• After seeing 4 heads, 6 tails, P(H) on next

flip = 1004 / (1004+1006) = 49.95%

• Compare: F ={3 heads, 3 tails} ~ weak
expectation that any new coin will be fair

• After seeing 4 heads, 6 tails, P(H) on next
flip = 7 / (7+9) = 43.75%



Example: thumbtack
• e.g., F ={5 heads, 3 tails} ~ weak expectation

that tacks are slightly biased towards heads
• After seeing 2 heads, 0 tails, P(H) on next flip

= 7 / (7+3) = 70%

• Some prior knowledge is always necessary to
avoid jumping to hasty conclusions...

• Suppose F = { }: After seeing 1 heads, 0 tails,
P(H) on next flip = 1 / (1+0) = 100%



Origin of prior knowledge

• Tempting answer: prior experience
• Suppose you have previously seen 2000

coin flips: 1000 heads, 1000 tails



Problems with simple empiricism

• Haven’t really seen 2000 coin flips, or any flips of a
thumbtack
– Prior knowledge is stronger than raw experience justifies

• Haven’t seen exactly equal number of heads and tails
– Prior knowledge is smoother than raw experience justifies

• Should be a difference between observing 2000 flips
of a single coin versus observing 10 flips each for 200
coins, or 1 flip each for 2000 coins
– Prior knowledge is more structured than raw experience



A simple theory
• “Coins are manufactured by a standardized

procedure that is effective but not perfect, and
not in principle biased toward heads or tails.”
– Justifies generalizing from previous coins to the

present coin.
– Justifies smoother and stronger prior than raw

experience alone.
– Explains why seeing 10 flips each for 200 coins is

more valuable than seeing 2000 flips of one coin.



A hierarchical Bayesian model

d1       d2       d3       d4

FH,FT

d1       d2       d3       d4

θ1

d1       d2       d3       d4

θ ~ Beta(FH,FT)

Coin 1 Coin 2 Coin 200...θ2 θ200

Background theory

• Qualitative prior knowledge (e.g., symmetry) can
influence estimates of continuous parameters (FH, FT).

• Explains why 10 flips of 200 coins are better than 2000
flips of a single coin: more informative about FH, FT.

Coins



• Learning the parameters of a generative
model as Bayesian inference.

• Prediction by Bayesian hypothesis averaging.
• Conjugate priors

– an elegant way to represent simple kinds of prior
knowledge.

• Hierarchical Bayesian models
– integrate knowledge across instances of a system,

or different systems within a domain, to explain
the origins of priors.

Summary: Bayesian parameter estimation



A hierarchical learning framework
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Stability versus Flexibility
• Can all domain knowledge be represented

with conjugate priors?
• Suppose you flip a coin 25 times and get all

heads.  Something funny is going on …
• But with F ={1000 heads, 1000 tails},

P(heads) on next flip = 1025 / (1025+1000)
= 50.6%.   Looks like nothing unusual.

• How do we balance stability and flexibility?
– Stability: 6 heads, 4 tails          θ ~ 0.5
– Flexibility: 25 heads, 0 tails θ  ~ 1



Bayesian model selection

• Which provides a better account of the data:
the simple hypothesis of a fair coin, or the
complex hypothesis that P(H) = θ ?

d1       d2       d3       d4

Fair coin, P(H) = 0.5

vs. d1       d2       d3       d4

P(H) = θ

θ



• P(H) = θ is more complex than P(H) = 0.5 in
two ways:
– P(H) = 0.5 is a special case of P(H) = θ
– for any observed sequence D, we can choose θ

such that D is more probable than if P(H) = 0.5

Comparing simple and complex hypotheses:
the need for Occam’s razor
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θ = 0.5

D = HHHHH

Comparing simple and complex hypotheses:
the need for Occam’s razor
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D = HHHHH

Comparing simple and complex hypotheses:
the need for Occam’s razor



Pr
ob

ab
ili

ty

D = HHTHT

nNn
DP

!
!= )1()|( """

θ = 0.5
θ = 0.6

Comparing simple and complex hypotheses:
the need for Occam’s razor



• P(H) = θ is more complex than P(H) = 0.5 in
two ways:
– P(H) = 0.5 is a special case of P(H) = θ
– for any observed sequence X, we can choose θ

such that X is more probable than if P(H) = 0.5
• How can we deal with this?

– Some version of Occam’s razor?
– Bayes: automatic version of Occam’s razor

follows from the “law of conservation of belief”.

Comparing simple and complex hypotheses:
the need for Occam’s razor
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• Model class hypothesis: is this
coin fair or unfair?

• Example probabilities:
– P(fair) = 0.999
– P(θ |fair) is Beta(1000,1000)
– P(θ |unfair) is Beta(1,1)

• 25 heads in a row propagates up,
affecting θ  and then P(fair|D)

d1       d2       d3       d4

θ

  P(fair|25 heads)          P(25 heads|fair)        P(fair) 
P(unfair|25 heads)      P(25 heads|unfair)    P(unfair) = ~  0.001

                  

FH,FT

fair/unfair?

Stability versus Flexibility revisited



Bayesian Occam’s Razor

All possible data sets d
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For any model M,

Law of “conservation of belief”: A model that can predict many
possible data sets must assign each of them low probability.



Occam’s Razor in curve fitting
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M1: A model that is too simple is unlikely to generate
         the data.
M3: A model that is too complex can generate many
         possible data sets, so it is unlikely to generate
         this particular data set at random.



Summary so far
• Three kinds of Bayesian inference

– Comparing two simple hypotheses
– Parameter estimation

• The importance and subtlety of prior knowledge
– Model selection

• Bayesian Occam’s razor, the blessing of abstraction

• Key concepts
– Probabilistic generative models
– Hierarchies of abstraction, with statistical

inference at all levels
– Flexibly structured representations



Plan for this lecture

• Some basic aspects of Bayesian statistics
– Comparing two hypotheses
– Model fitting
– Model selection

• Two (very brief) case studies in modeling
human inductive learning
– Causal learning
– Concept learning



Learning causation from correlation

“Does C cause E?”
(rate on a scale from 0 to 100)

E present (e+)

E absent (e-)

C present
(c+)

C absent
(c-)

a

b

c

d



• Strength: how strong is the relationship?

• Structure: does a relationship exist?

Learning with graphical models

vs.
E

CB

E

CB

E

C

  w1 

B

w0

Delta-P, Power PC, …

h1 h0

(Griffiths and Tenenbaum, 
Cognitive Psychology 2005)



• Hypotheses:

• Bayesian causal inference:

       support =

! 

P(d | h1) = P(d |w0,w1) p(w0,w1 | h1)0
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Bayesian learning of causal structure

P(d|h1)

P(d|h0)
likelihood ratio (Bayes factor)
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Bayesian Occam’s Razor

All data sets d

P(
d 

| h
 )

h0 (no relationship)

h1 (positive relationship)

! 
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" d | h) = 1

For any model h,

P(e+|c+) >>
P(e+|c-)

P(e+|c+) ~
P(e+|c-)



Comparison with human judgments

ΔP = 0
ΔP = 0.25

ΔP = 0.5
ΔP = 0.75

ΔP = 1

People 

ΔP 

Power PC 

Bayesian structure learning   

Assume
structure:
Estimate
strength w1

vs.

E

C

w1

B

w0

E

CB

w0
E

C

w1

B

w0

(Buehner & Cheng, 1997; 2003)



Inferences about causal structure depend on
the functional form of causal relations



Concept learning: the number game

• Program input: number between 1 and 100
• Program output: “yes” or “no”
• Learning task:

– Observe one or more positive (“yes”) examples.
– Judge whether other numbers are “yes” or “no”.



Examples of
“yes” numbers

Generalization
judgments (N = 20)

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
 “multiples of 10”

Focused similarity:
  numbers near 50-60

Concept learning: the number game



• H: Hypothesis space of possible concepts:
– H1: Mathematical properties: multiples and powers of small numbers.
– H2: Magnitude: intervals with endpoints between 1 and 100.

• X = {x1, . . . , xn}:  n examples of a concept C.
• y: some new object – is it in C?

Bayesian model

x1        x2       x3       x4
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(Tenenbaum 2000; Tenenbaum
and Griffiths, BBS 2001)



Likelihood:  p(X|h)
• Size principle: Smaller

hypotheses receive greater
likelihood, and exponentially
more so as n increases.

• Follows from assumption of
randomly sampled examples +
law of “conservation of belief”:

• Captures the intuition of a
“representative” sample.
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 2    4    6    8   10
12  14  16  18  20
22  24  26  28  30
32  34  36  38  40
42  44  46  48  50
52  54  56  58  60
62  64  66  68  70
72  74  76  78  80
82  84  86  88  90
92  94  96  98 100

h1 h2



Likelihood:  p(X|h)
• Size principle: Smaller

hypotheses receive greater
likelihood, and exponentially
more so as n increases.

• Follows from assumption of
randomly sampled examples +
law of “conservation of belief”:

• Captures the intuition of a
“representative” sample.
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Prior:  p(h)
• Choice of hypothesis space embodies a strong prior:

effectively, p(h) ~ 0 for many logically possible but
conceptually unnatural hypotheses.

• Prevents overfitting by highly specific but unnatural
hypotheses, e.g. “multiples of 10 except 50 and 70”.

e.g., X = {60 80 10 30}:
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Prior:  p(h)
• Choice of hypothesis space embodies a strong prior:

effectively, p(h) ~ 0 for many logically possible but
conceptually unnatural hypotheses.

• Prevents overfitting by highly specific but unnatural
hypotheses, e.g. “multiples of 10 except 50 and 70”.

• p(h) encodes relative weights of alternative theories:

H1: Mathematical properties (24)
• even numbers
• powers of two
• multiples of three
   ...

H2: Magnitude intervals (5050)
• 10-15
• 20-32
• 37-54
   …

H: Total hypothesis space
p(H1) = λ p(H2) = 1-λ

p(h) = λ / 24 p(h) = 1-λ / 5050 * Gamma(s;σ) 



Posterior:

• X = {60, 80, 10, 30}

• Why prefer “multiples of 10” over “even
numbers”?  p(X|h).

• Why prefer “multiples of 10” over “multiples of
10 except 50 and 20”?  p(h).

• Why does a good generalization need both high
prior and high likelihood?  p(h|X) ~ p(X|h) p(h)
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Occam’s razor: balancing simplicity and fit to data



+ Examples Human generalization

60

60  80  10  30

60  52  57  55

Bayesian Model 

16

16  8  2  64

16  23  19  20



• Higher-level hypothesis: is this concept
mathematical or magnitude-based?

• Example probabilities:
– P(math) = λ
– P(h | math) …
– P(h | magnitude) …

math/magnitude?

Stability versus Flexibility

x1        x2       x3       x4

h

   X =

• Just a few examples may be sufficient to infer the kind of
concept, under the size-principle likelihood
– if an a priori reasonable hypothesis of one kind fits much more tightly

than all reasonable hypothesis of the other kind.

• Just a few examples can give all-or-none, “rule-like”
generalization or more graded, “similarity-like” generalization.
– More all-or-none when the smallest consistent hypothesis is much

smaller than all other reasonable hypotheses; otherwise more graded.



Conclusion:
Contributions of Bayesian models

• A framework for understanding how the mind can solve
fundamental problems of induction.

• Strong, principled quantitative models of human cognition.
• Tools for studying people’s implicit knowledge of the world.
• Beyond classic limiting dichotomies: “rules vs. statistics”,

“nature vs. nurture”, “domain-general vs. domain-specific” .
• A unifying mathematical language for all of the cognitive

sciences: AI, machine learning and statistics, psychology,
neuroscience, philosophy, linguistics…. A bridge between
engineering and “reverse-engineering”.



Resources
• Tutorials chapters and articles:

– “Bayesian models of cognition” chapter in Ron Sun (ed.), Cambridge
Handbook of Computational Cognitive Modeling. Cambridge Univ Press.

– “A tutorial introduction to Bayesian models of cognitive development”,
by Amy Perfors, JBT, TLG, and Fei Xu.

• Tom’s Bayesian reading list:
– http://cocosci.berkeley.edu/tom/bayes.html
– tutorial slides will be posted there!

• Trends in Cognitive Sciences special issue on probabilistic
models of cognition (July 2006, volume 10, issue 7)

• IPAM graduate summer school on probabilistic models of
cognition (2007 videos, 2011 forthcoming)

• MLSS 2010 (Machine Learning and Cognitive Science)
Sardinia, VideoLectures


