Part III

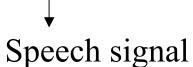
Learning structured representations Hierarchical Bayesian models

Universal Grammar

Grammar

Phrase structure

Utterance



Hierarchical phrase structure grammars (e.g., CFG, HPSG, TAG)

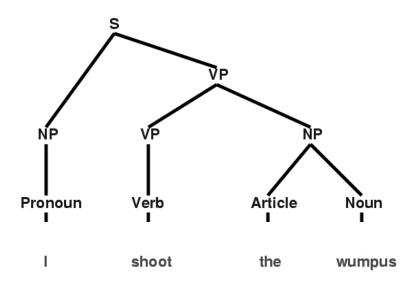
$$S \rightarrow NP VP$$

$$NP \rightarrow Det [Adj] Noun [RelClause]$$

$$RelClause \rightarrow [Rel] NP V$$

$$VP \rightarrow VP NP$$

$$VP \rightarrow Verb$$



Outline

- Learning structured representations
 - grammars
 - logical theories

Learning at multiple levels of abstraction

A historical divide

Structured Representations

VS

Innate knowledge

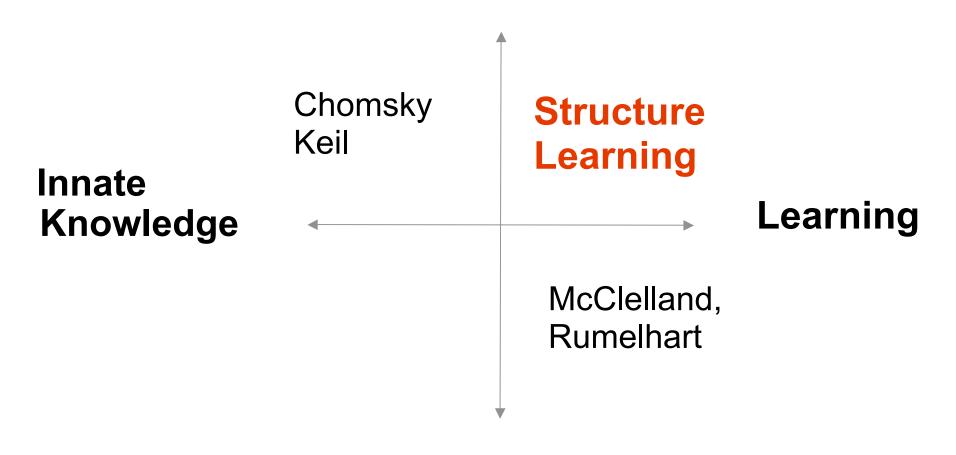
Learning

Unstructured

Representations

(Chomsky, Pinker, Keil, ...) (McClelland, Rumelhart, ...)

Structured Representations



Unstructured Representations

Representations

Causal networks

asbestos
↓
lung cancer
coughing chest pain

Grammars

$$S \rightarrow NP VP$$
 $NP \rightarrow Det [Adj] Noun [RelClause]$
 $RelClause \rightarrow [Rel] NP V$
 $VP \rightarrow VP NP$
 $VP \rightarrow Verb$

Logical theories

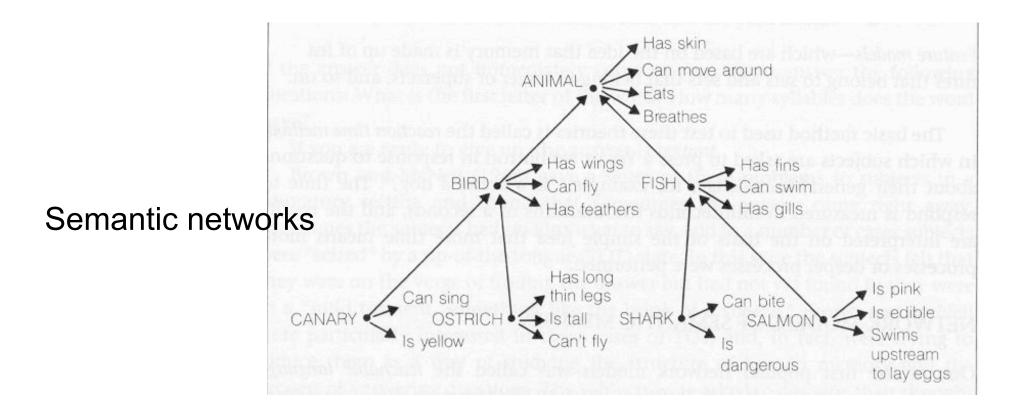
$$\forall x \, y \, \mathsf{Sibling}(x, y) \leftarrow \mathsf{Sibling}(y, x)$$

$$\forall x \, y \, \mathsf{Ancestor}(x,y) \leftarrow \mathsf{Parent}(x,y)$$

Representations

Phonological rules

$$\begin{bmatrix} +syllabic \\ -consonantal \end{bmatrix} \rightarrow \begin{bmatrix} +back \end{bmatrix} / \begin{bmatrix} +back \\ +syllabic \\ -consonantal \end{bmatrix} \begin{bmatrix} +consonantal \end{bmatrix}^* _$$



How to learn a R

Search for R that maximizes

$$P(R|\mathsf{Data}) \propto P(\mathsf{Data}|R)P(R)$$

- Prerequisites
 - Put a prior over a hypothesis space of Rs.
 - Decide how observable data are generated from an underlying R.

anything How to learn a R

Search for R that maximizes

$$P(R|\mathsf{Data}) \propto P(\mathsf{Data}|R)P(R)$$

- Prerequisites
 - Put a prior over a hypothesis space of Rs.
 - Decide how observable data are generated from an underlying R.

Context free grammar

$$S \rightarrow N VP$$

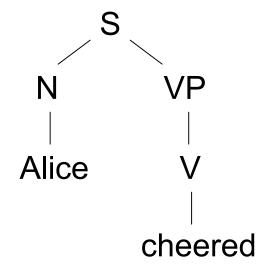
$$VP \rightarrow V$$

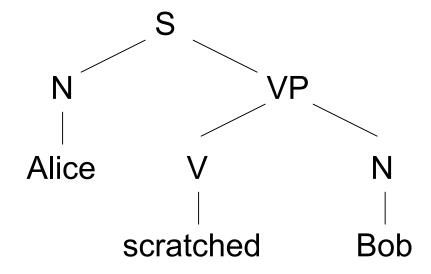
$$N \rightarrow$$
 "Alice"

$$N \rightarrow$$
 "Alice" $V \rightarrow$ "scratched"

$$VP \rightarrow V N$$

$$N \rightarrow$$
 "Bob" $V \rightarrow$ "cheered"

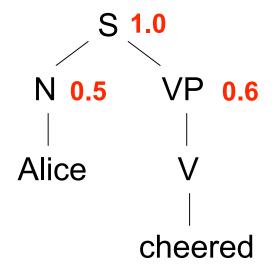


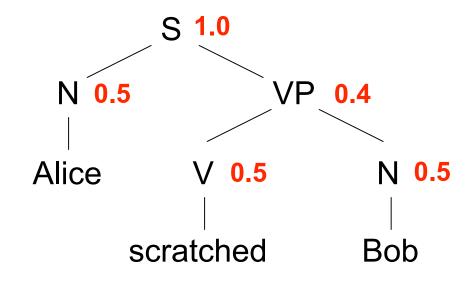


Probabilistic context free grammar

S
$$\stackrel{1.0}{\rightarrow}$$
 N VP $\stackrel{0.6}{\rightarrow}$ V $\stackrel{0.5}{\rightarrow}$ "Alice" $\stackrel{0.5}{\vee}$ "scratched" $\stackrel{0.4}{\vee}$ V N $\stackrel{0.5}{\rightarrow}$ "Bob" $\stackrel{0.5}{\vee}$ "cheered"

$$VP \xrightarrow{0.6} V$$
 $V \xrightarrow{0.5}$ "Alice" $V \xrightarrow{0.5}$ "scratched" $VP \xrightarrow{0.4} VN$ $VP \xrightarrow{0.5}$ "Bob" $V \xrightarrow{0.5}$ "cheered"





probability =
$$1.0 * 0.5 * 0.6$$

= 0.3

probability =
$$1.0*0.5*0.4*0.5*0.5$$

= 0.05

The learning problem

Grammar G:

S
$$\stackrel{1.0}{>}$$
 N VP $\stackrel{0.6}{\lor}$ V $\stackrel{0.5}{\lor}$ V $\stackrel{0.5}{\lor}$ "Alice" V $\stackrel{0.5}{\rightarrow}$ "scratched" VP $\stackrel{0.4}{\rightarrow}$ V N $\stackrel{0.5}{\rightarrow}$ "Bob" V $\stackrel{0.5}{\rightarrow}$ "cheered"

Data D:

Alice scratched.	Alice cheered.	
Bob scratched.	Bob cheered.	
Alice scratched Alice.	Alice cheered Alice.	
Alice scratched Bob.	Alice cheered Bob.	
Bob scratched Alice.	Bob cheered Alice.	
Bob scratched Bob.	Bob cheered Bob.	

Grammar learning

Search for G that maximizes

$$P(G|\mathsf{Data}) \propto P(\mathsf{Data}|G)P(G)$$

- Prior: $P(G) \propto 2^{-\operatorname{length}(G)}$
- Likelihood: P(Data|G)
 - assume that sentences in the data are independently generated from the grammar.

(Horning 1969; Stolcke 1994)

Experiment

```
S --> NP VP
NP --> Det N
VP --> Vt NP
   --> Vc PP
   --> Vi
PP --> P NP
Det --> a
    --> the
Vt --> touches
   --> covers
Vc --> is
Vi --> rolls
   --> bounces
N --> circle
   --> square
   --> triangle
P --> above
   --> below
```

Data: 100 sentences

```
the circle covers a square
a square is above the triangle
a circle bounces
```

-

(Stolcke, 1994)

Generating grammar:

```
S --> NP VP
NP --> Det N
VP --> Vt NP
   --> Vc PP
   --> Vi
PP --> P NP
Det --> a
    --> the
Vt --> touches
   --> covers
Vc --> is
Vi --> rolls
   --> bounces
N --> circle
   --> square
   --> triangle
P --> above
   --> below
```

Model solution:

Predicate logic

A compositional language

$$\forall x \, y \, \mathsf{Sibling}(x,y) \leftarrow \mathsf{Sibling}(y,x)$$

For all x and y, if y is the sibling of x then x is the sibling of y

 $\forall x \, y \, z \, \mathsf{Ancestor}(x, z) \leftarrow \mathsf{Ancestor}(x, y) \, \land \, \mathsf{Ancestor}(y, z)$

For all x, y and z, if x is the ancestor of y and y is the ancestor of z, then x is the ancestor of z.

Learning a kinship theory

Theory T:

```
\forall x\,y\, \mathsf{Sibling}(x,y) \leftarrow \mathsf{Sibling}(y,x) \\ \forall x\,y\,z\, \mathsf{Ancestor}(x,z) \leftarrow \mathsf{Ancestor}(x,y) \, \wedge \, \mathsf{Ancestor}(y,z) \\ \forall x\,y\, \mathsf{Ancestor}(x,y) \leftarrow \mathsf{Parent}(x,y) \\ \forall x\,y\,z\, \mathsf{Uncle}(x,z) \leftarrow \mathsf{Brother}(x,y) \, \wedge \, \mathsf{Parent}(y,z) \\ \end{cases}
```

Data D:

```
Sibling(victoria, arthur), Sibling(arthur, victoria),
Ancestor(chris, victoria), Ancestor(chris, colin),
Parent(chris, victoria), Parent(victoria, colin),
Uncle(arthur, colin), Brother(arthur, victoria) ...

(Hinton, Quinlan, ...)
```

Learning logical theories

Search for T that maximizes

$$P(T|\mathsf{Data}) \propto P(\mathsf{Data}|T)P(T)$$

- Prior: $P(T) \propto 2^{-\operatorname{length}(T)}$
- Likelihood: P(Data|T)
 - assume that the data include all facts that are true according to T

(Conklin and Witten; Kemp et al 08; Katz et al 08)

Theory-learning in the lab

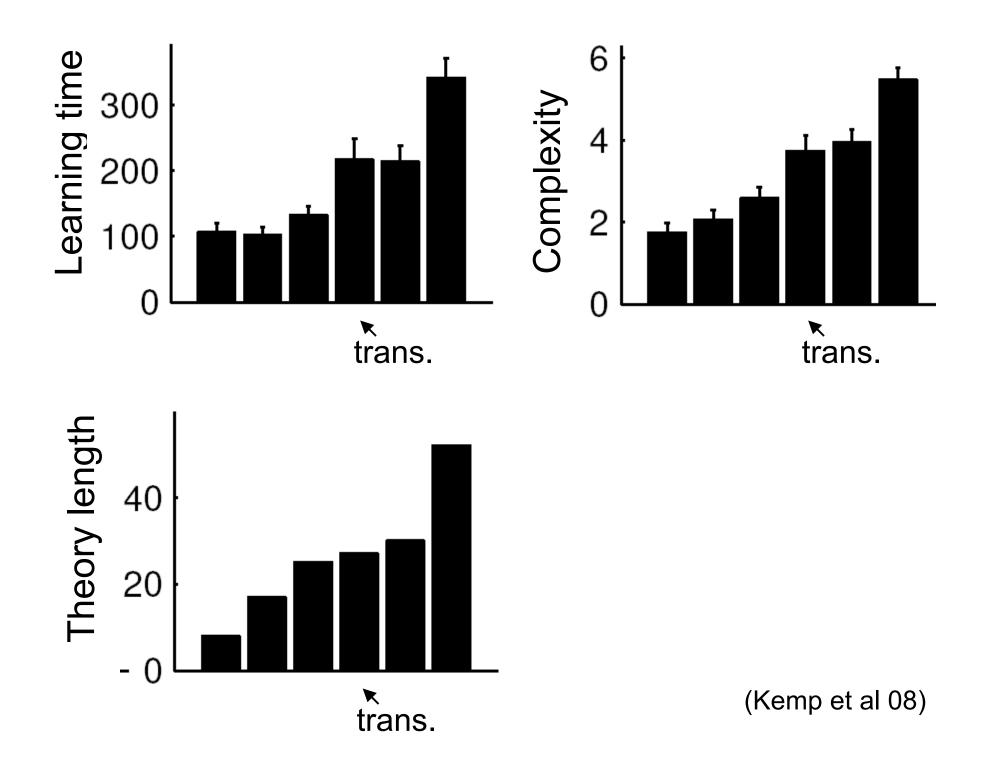
R(f,c)	R(k,c)	R(c,I)	R(c,b)
		11(0,1)	R(f,k)
R(f,I)	R(k,I)	R(I,b)	
R(f,b)	R(k,b)	D/f b)	R(I,h)
. ((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		R(f,h)	R(b,h)
R(k,h)	R(c,h)		
			4070

(cf Krueger 1979)

Theory-learning in the lab

Transitive: R(f,k). R(k,c). R(c,l). R(l,b). R(b,h).

 $R(X,Z) \leftarrow R(X,Y), R(Y,Z).$



Conclusion: Part 1

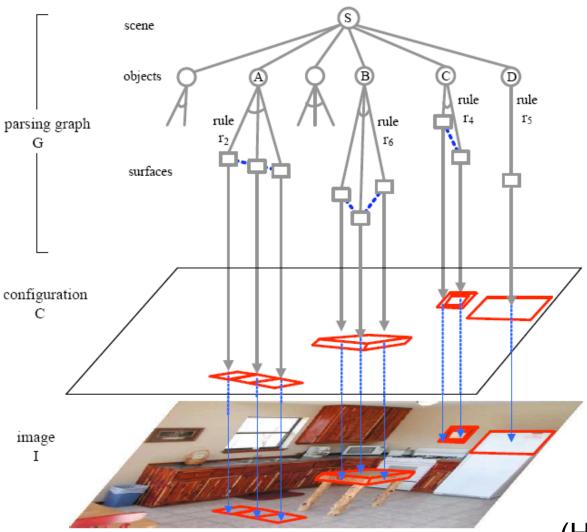
 Bayesian models can combine structured representations with statistical inference.

Outline

- Learning structured representations
 - grammars
 - logical theories

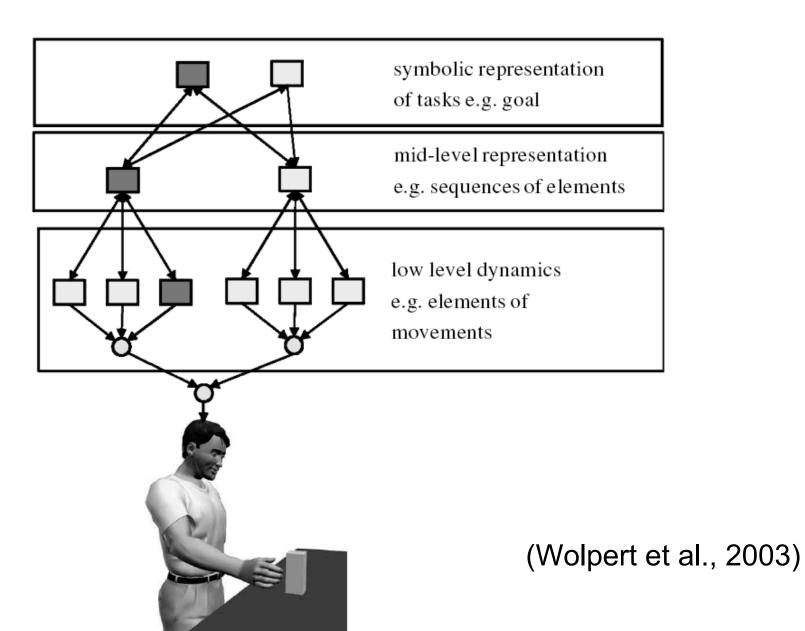
Learning at multiple levels of abstraction

Vision

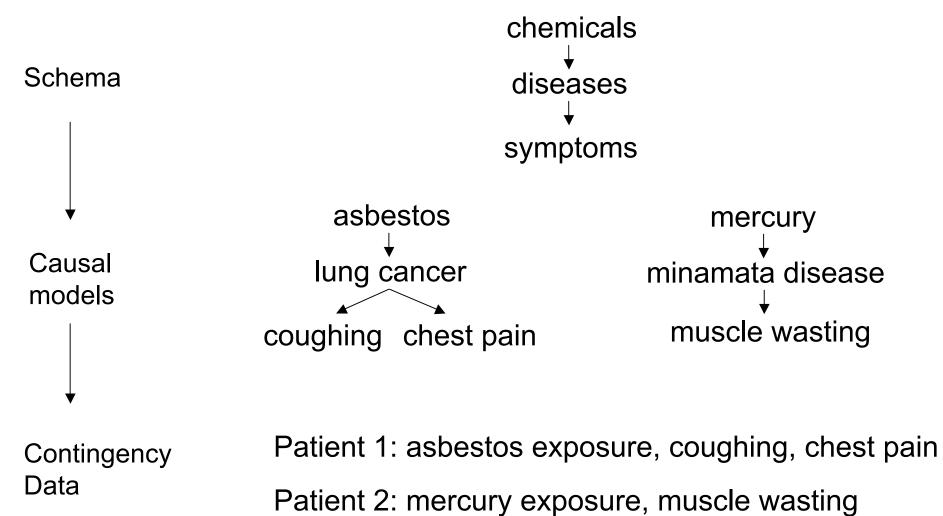


(Han and Zhu, 2006)

Motor Control



Causal learning



(Kelley; Cheng; Waldmann)

Universal Grammar

P(grammar | UG)

Grammar

P(phrase structure | grammar)

Phrase structure

P(utterance | phrase structure)

Utterance

P(speech | utterance)

Speech signal

Hierarchical phrase structure grammars (e.g., CFG, HPSG, TAG)

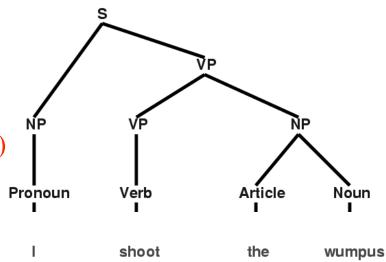
$$S \rightarrow NP VP$$

 $NP \rightarrow Det[Adj] Noun[RelClause]$

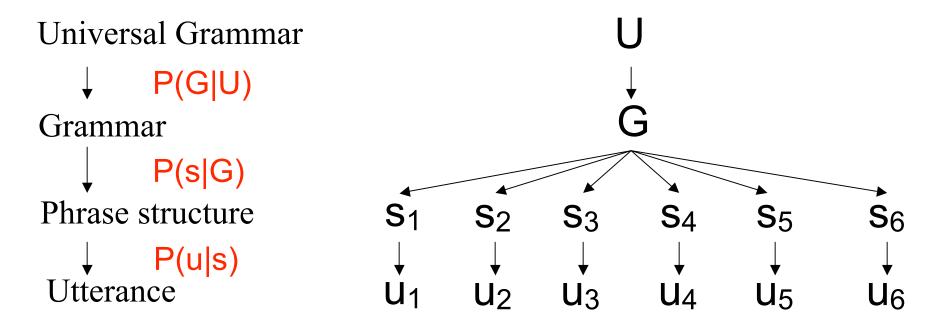
 $RelClause \rightarrow [Rel] NP V$

$$VP \rightarrow VP NP$$

$$VP \rightarrow Verb$$



Hierarchical Bayesian model

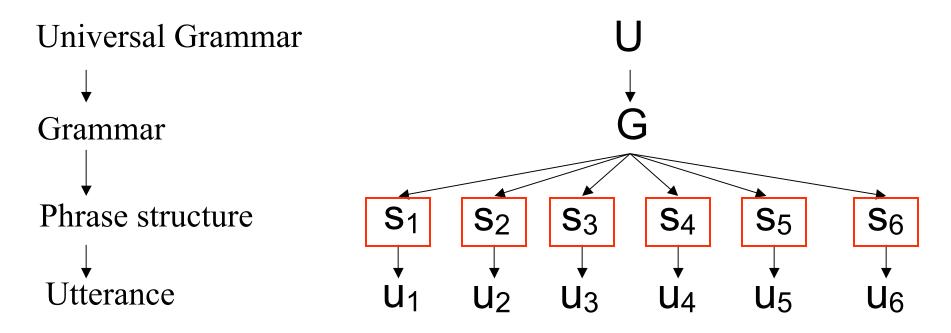


A hierarchical Bayesian model specifies a joint distribution over all variables in the hierarchy:

$$P(\{u_i\}, \{s_i\}, G \mid U)$$

= $P(\{u_i\} \mid \{s_i\}) P(\{s_i\} \mid G) P(G|U)$

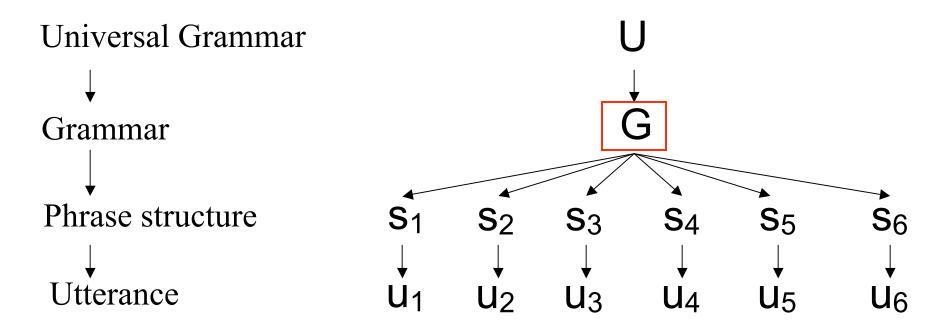
Top-down inferences



Infer {s_i} given {u_i}, G:

 $P(\{s_i\} \mid \{u_i\}, G) \alpha P(\{u_i\} \mid \{s_i\}) P(\{s_i\} \mid G)$

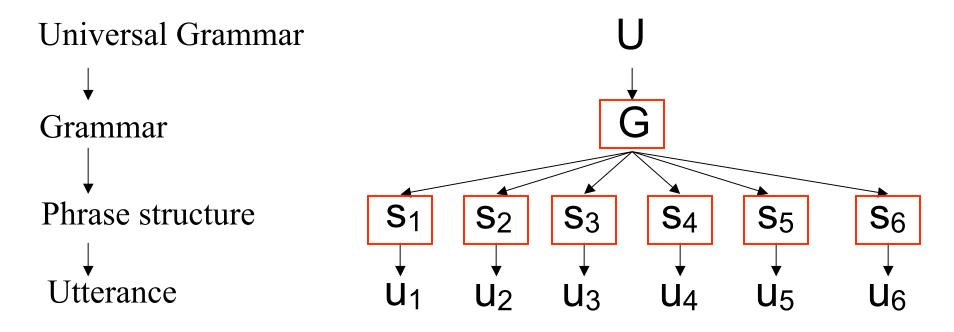
Bottom-up inferences



Infer G given {s_i} and U:

 $P(G|\{s_i\}, U) \alpha P(\{s_i\}|G) P(G|U)$

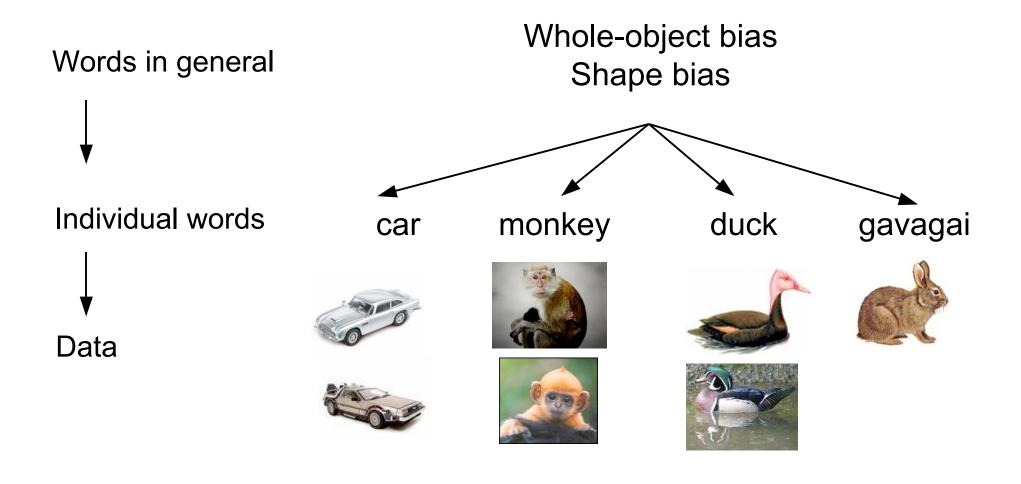
Simultaneous learning at multiple levels



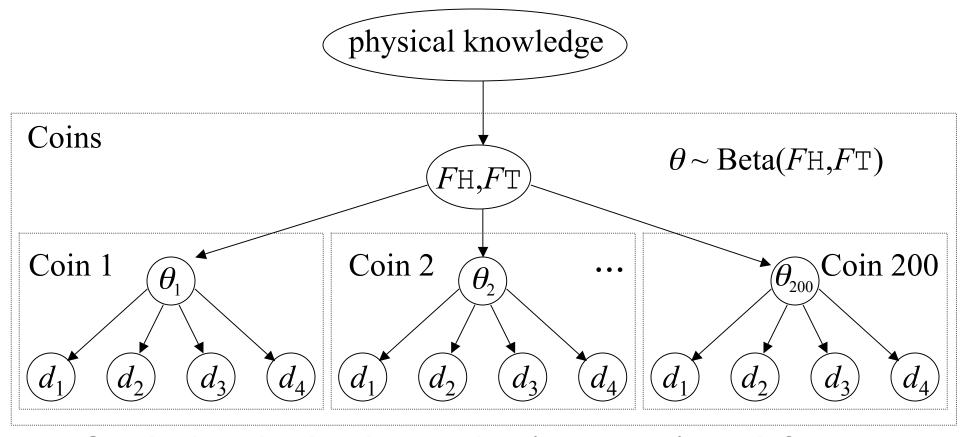
Infer G and {s_i} given {u_i} and U:

 $P(G, \{s_i\} | \{u_i\}, U) \alpha P(\{u_i\} | \{s_i\}) P(\{s_i\} | G) P(G|U)$

Word learning



A hierarchical Bayesian model



- Qualitative physical knowledge (symmetry) can influence estimates of continuous parameters (F_H, F_T).
- Explains why 10 flips of 200 coins are better than 2000 flips of a single coin: more informative about FH, FT.

Word Learning

"This is a dax."

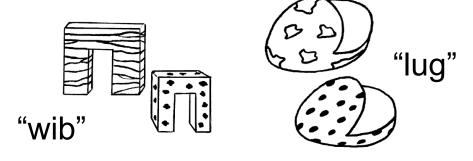
"Show me the dax."

- 24 month olds show a shape bias
- 20 month olds do not

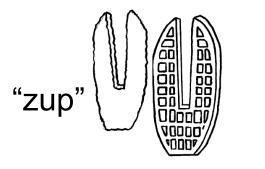
(Landau, Smith & Gleitman)

Is the shape bias learned?

 Smith et al (2002) trained 17-month-olds on labels for 4 artificial categories:



 After 8 weeks of training 19month-olds show the shape bias:



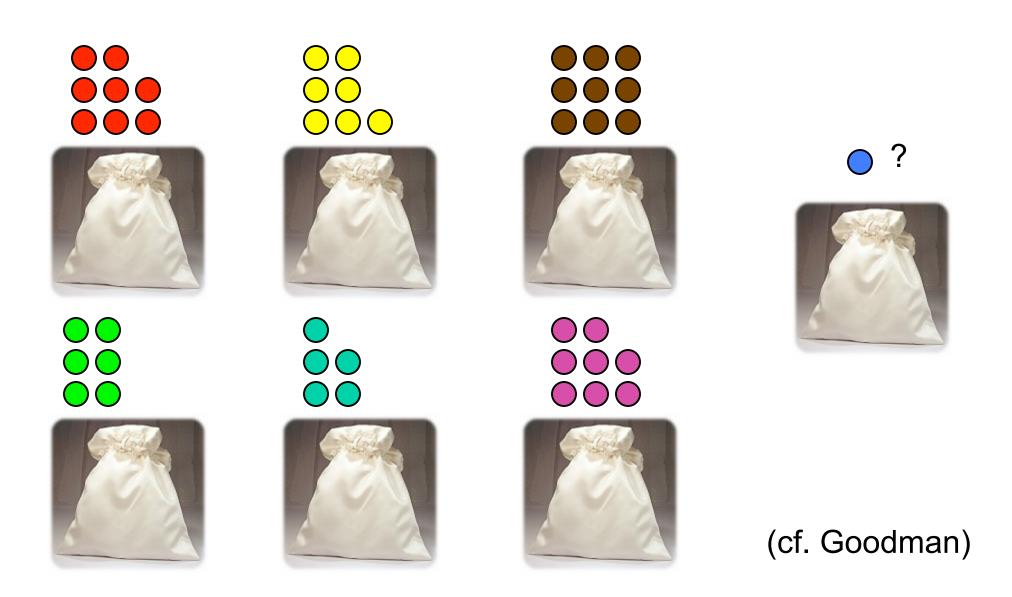
"This is a dax."

"Show me the dax."

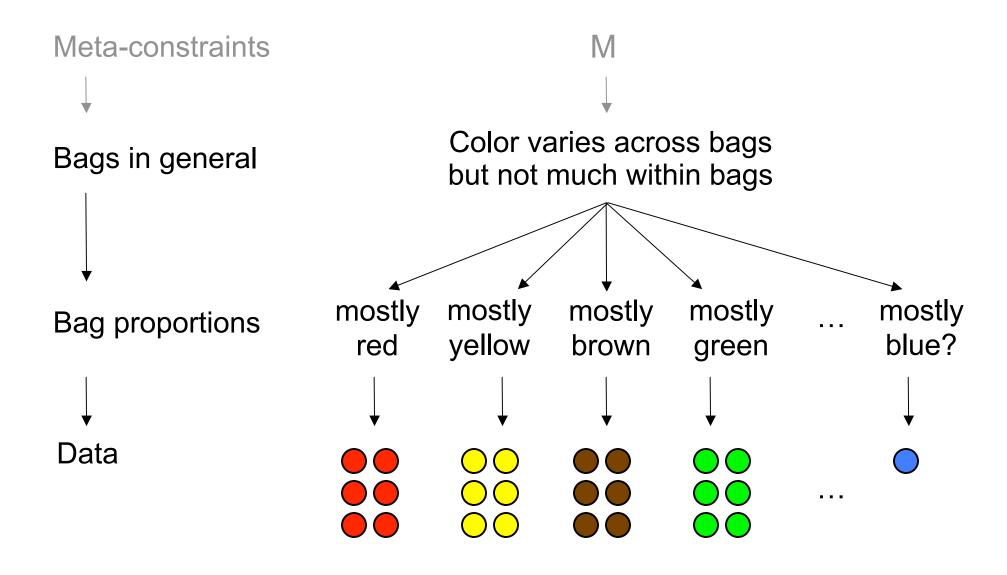
Learning about feature variability

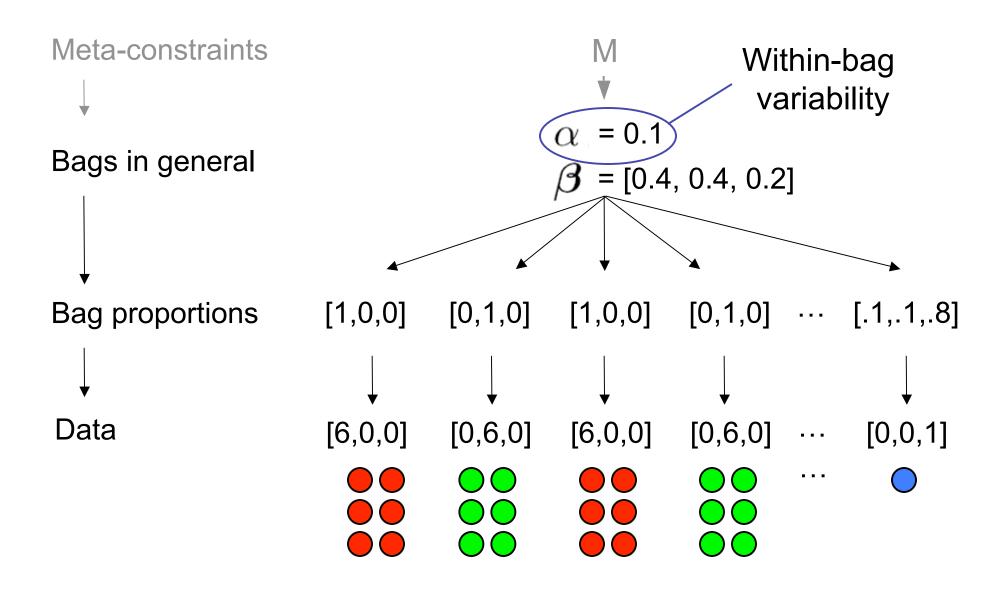
(cf. Goodman)

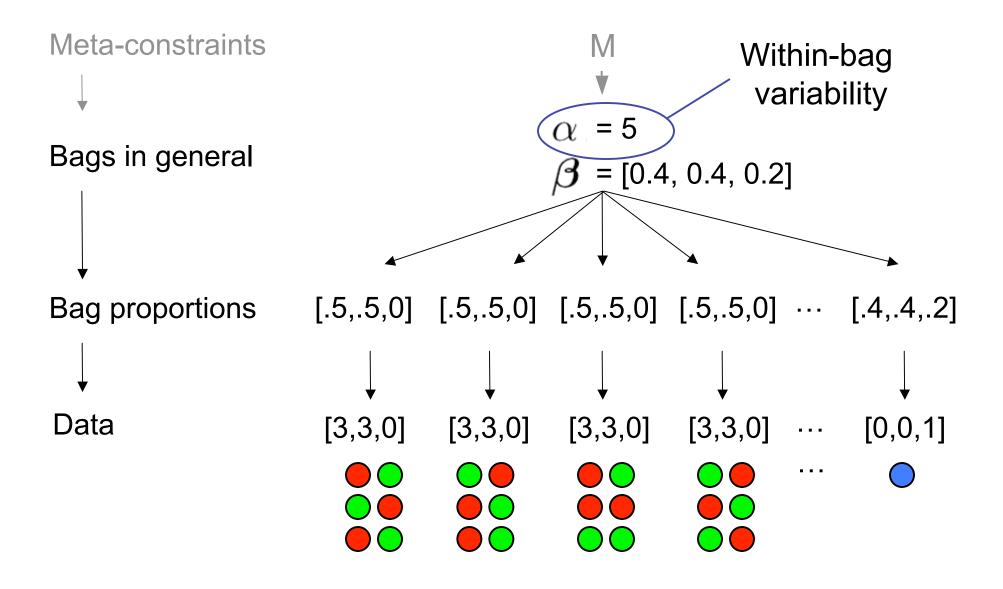
Learning about feature variability



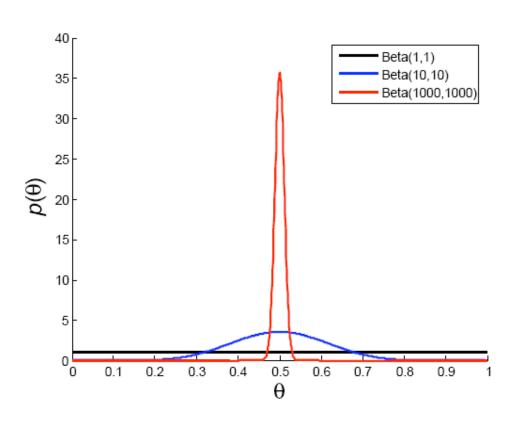
A hierarchical model

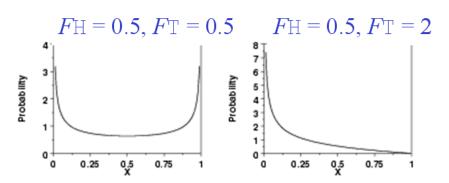


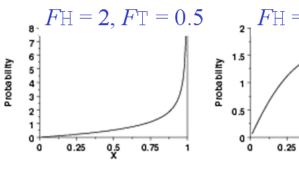


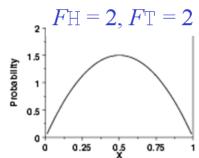


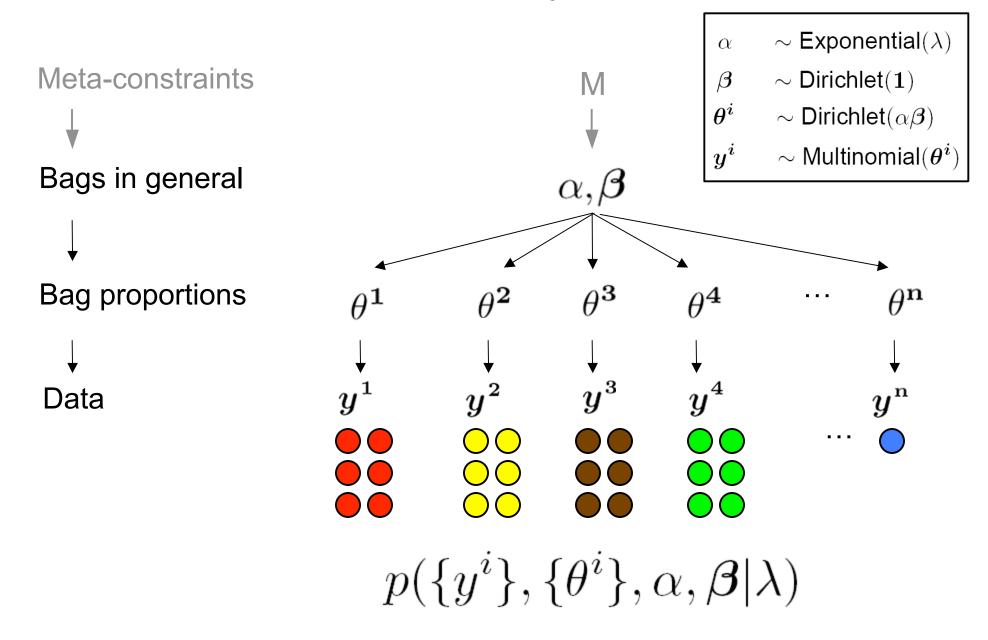
Shape of the Beta prior

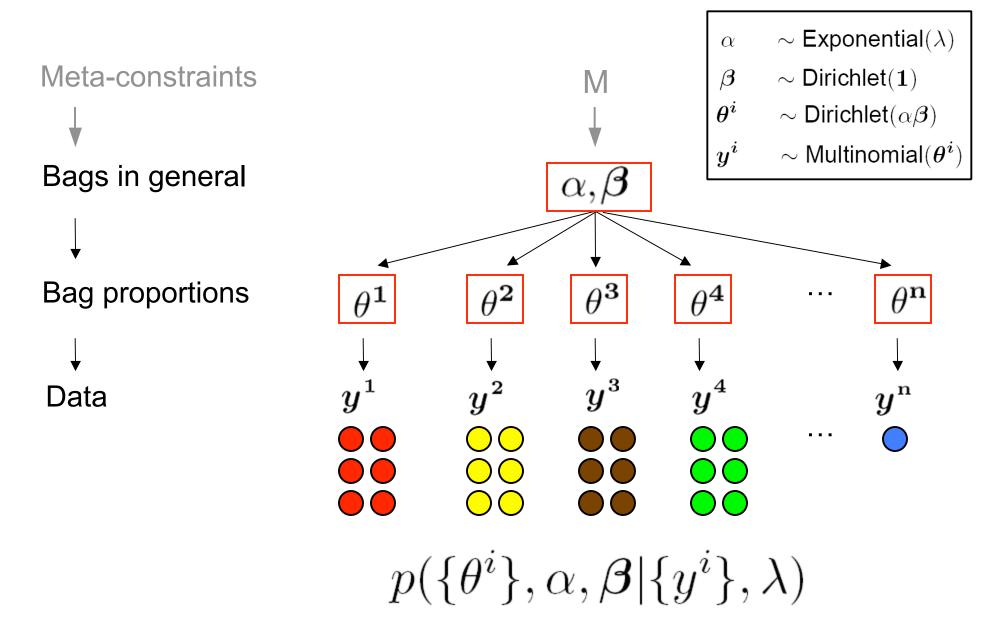




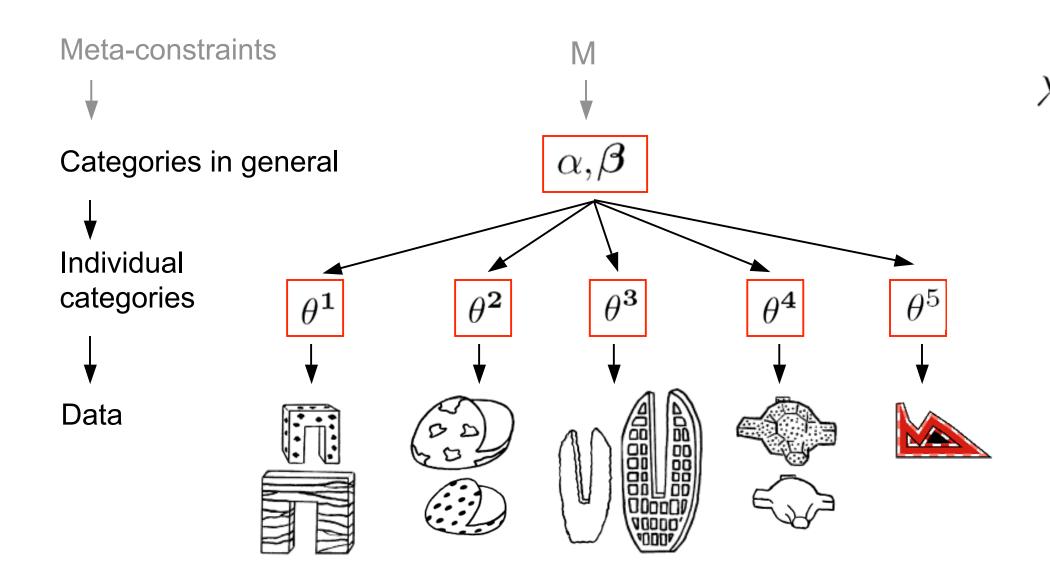


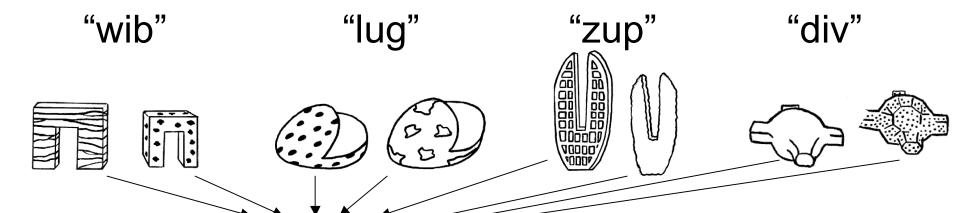




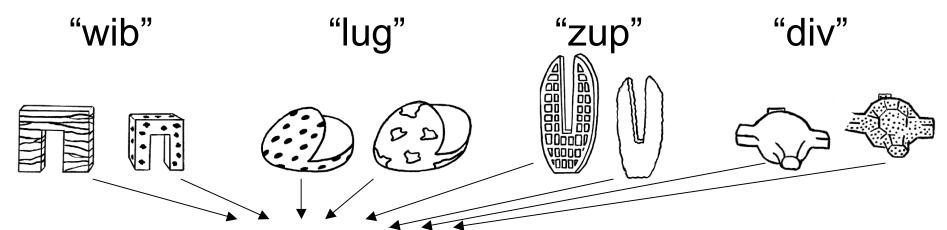


Learning about feature variability



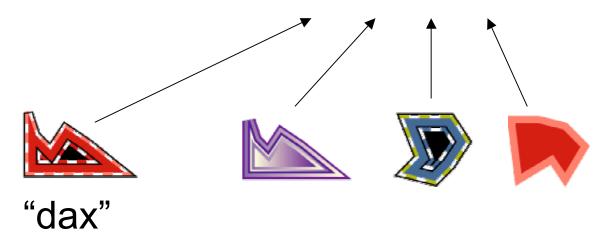


Category	11 22 33 44
Shape	11 22 33 44
Texture	12345678
Color	12345678
Size	12 12 12 12

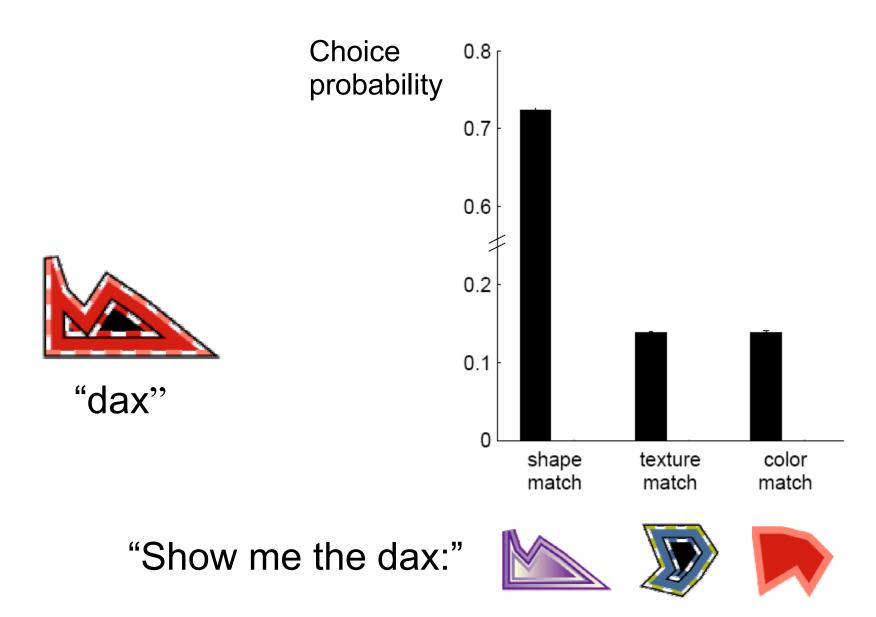


Category	11 22 33 44
Shape	11 22 33 44
Texture	12345678
Color	12345678
Size	12 12 12 12

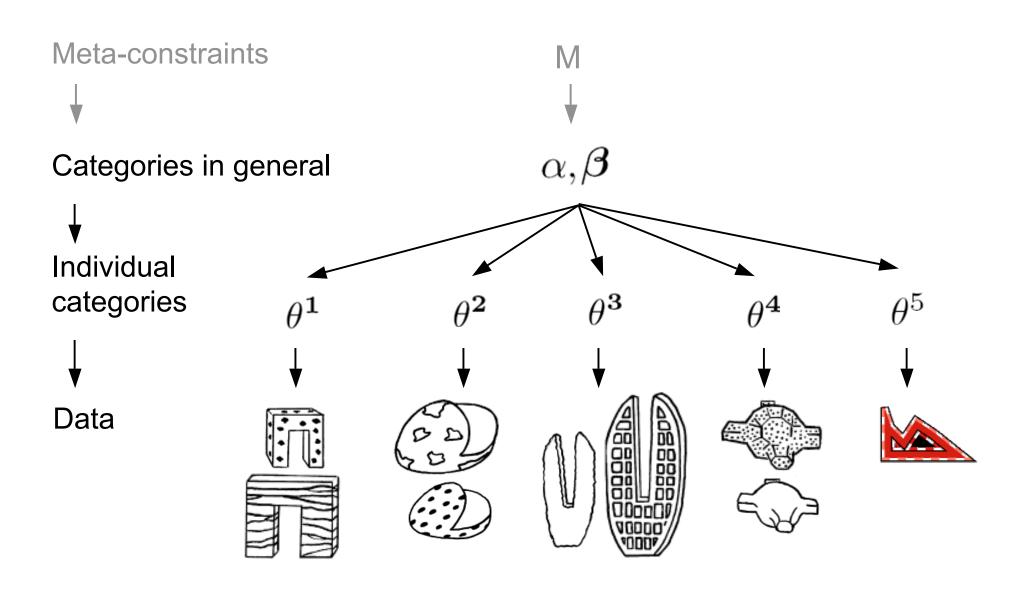
5	?	?	?
5	5	6	6
9	10	9	10
9	10	10	9
1	1	1	1



Model predictions



Where do priors come from?

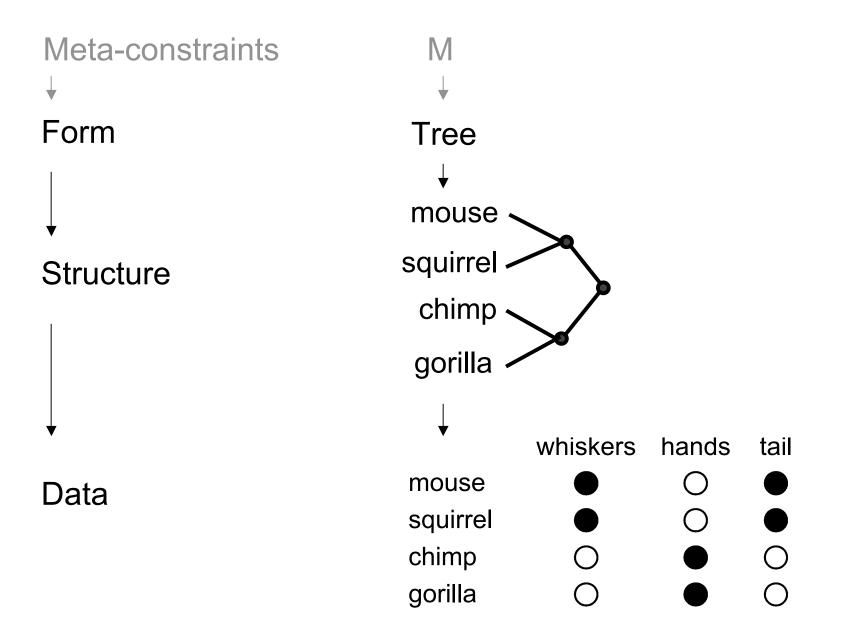


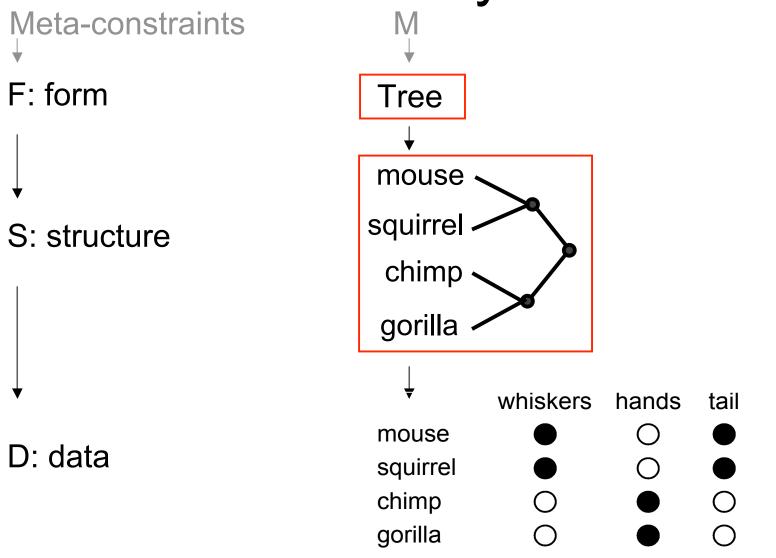
Knowledge representation

			Ti 50	Zr 90	? 100
			V 51	Nb 94	Ta 182
			Cr 52	Mo 96	W 186
			Mn 55	Rh 104.4	Pt 197.4
			Fe 56	Ru 104.4	Ir 198
			Ni, Co 59	Pd 106.6	Os 199
H 1			Cu 63.4	Ag 108	Hg 200
	Be 9.4	Mg 24	Zn 65.2	Cd 112	
	B 11	Al 27.4	? 68	U 116	Au 197?
	C 12	Si 28	? 70	Sn 118	
	N 14	P 31	As 75	Sb 122	Bi 210?
	O 16	S 32	Se 79.4	Te 128?	
	F 19	Cl 35.5	Br 80	I 127	
Li 7	Na 23	K 39	Rb 85.4	Cs 133	Tl 204
		Ca 40	Sr 87.6	Ba 137	Pb 207
		? 45	Ce 92		
		Er? 56	La 94		
		Yt? 60	Di 95		
		In 75.6?	Th 118?		

Children discover structural form

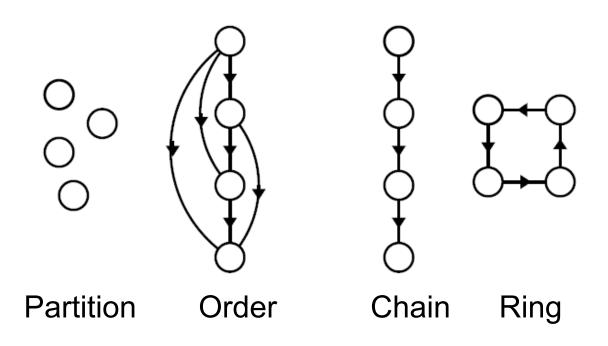
- Children may discover that
 - Social networks are often organized into cliques
 - The months form a cycle
 - "Heavier than" is transitive
 - Category labels can be organized into hierarchies

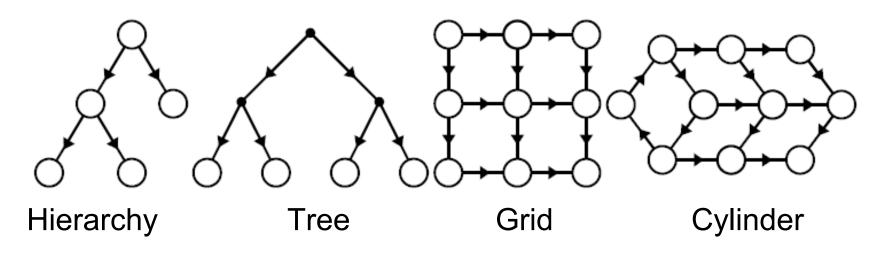




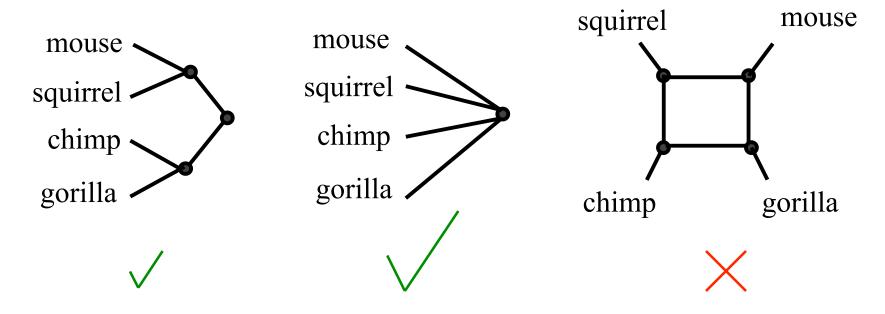
$$P(S, F|D, n) \propto P(D|S)P(S|F, n)P(F)$$

Structural forms





P(S|F,n): Generating structures



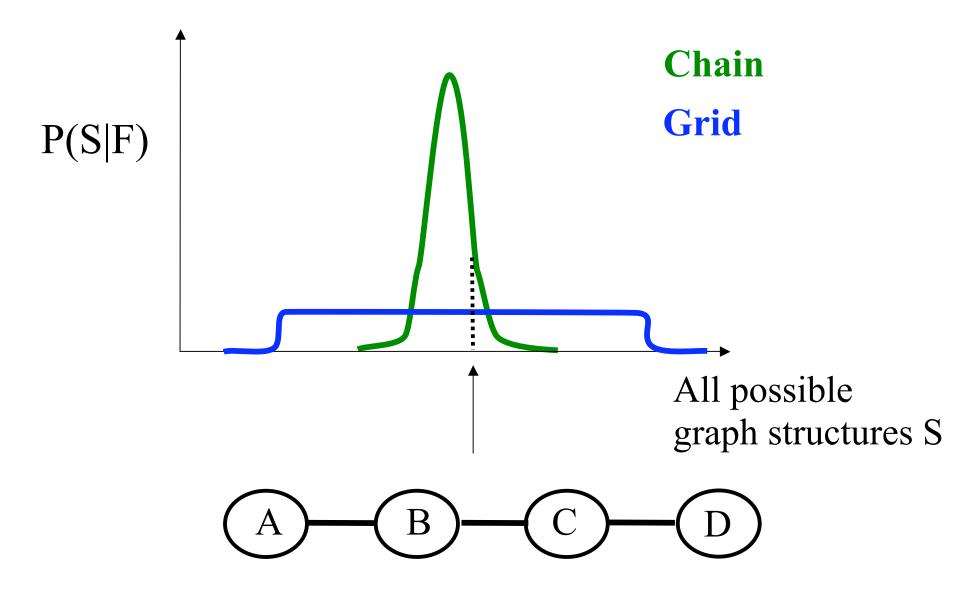
 Each structure is weighted by the number of nodes it contains:

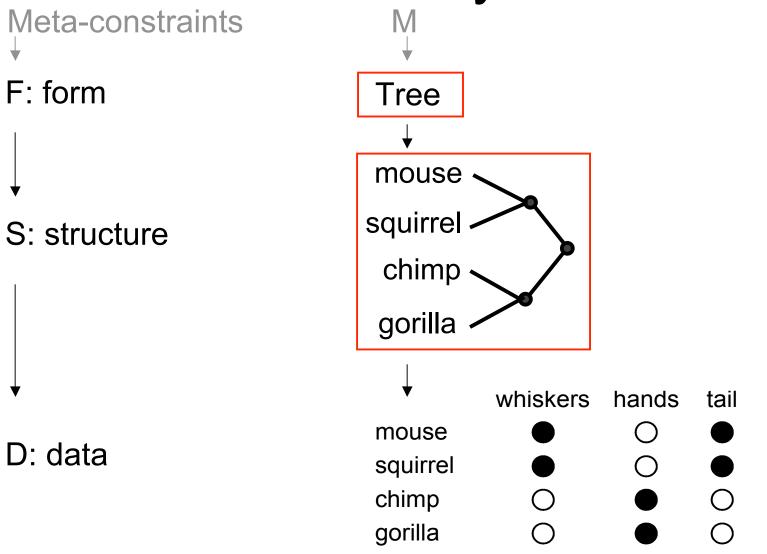
$$P(S|F) \propto \left\{ \begin{array}{cc} 0 & \text{if S inconsistent with F} \\ \theta(1-\theta)^{|S|} & \text{otherwise} \end{array} \right.$$

where |S| is the number of nodes in S

P(S|F, n): Generating structures from forms

Simpler forms are preferred





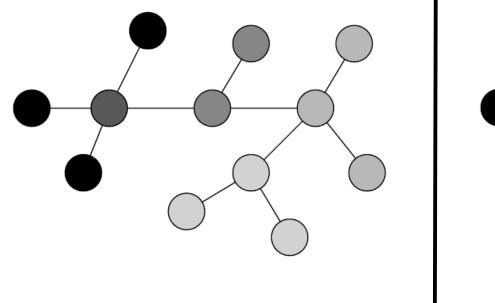
$$P(S, F|D, n) \propto P(D|S)P(S|F, n)P(F)$$

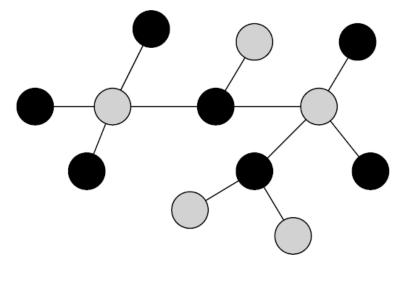
p(D|S): Generating feature data

 Intuition: features should be smooth over graph S

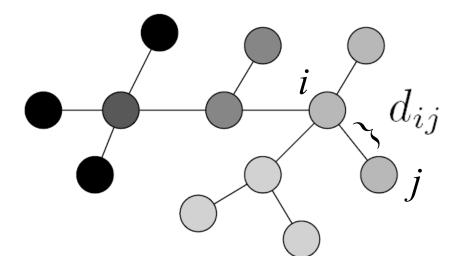
Relatively smooth

Not smooth





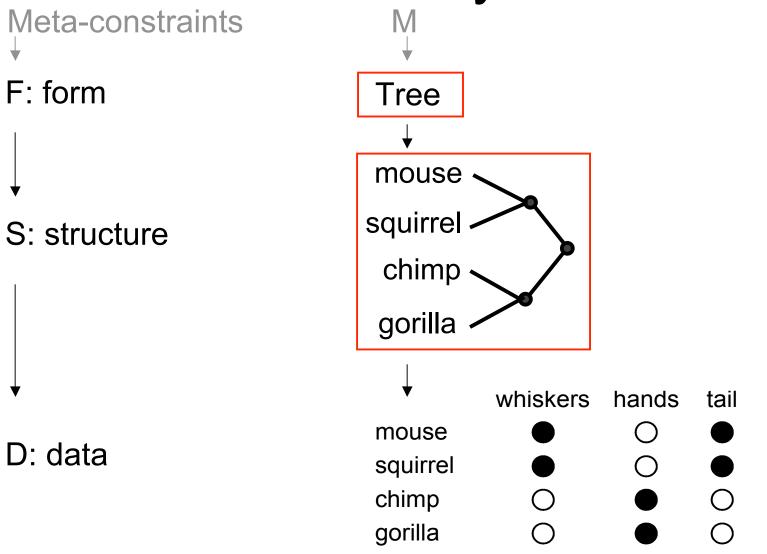
p(D|S): Generating feature data



Let f_i be the feature value at node i

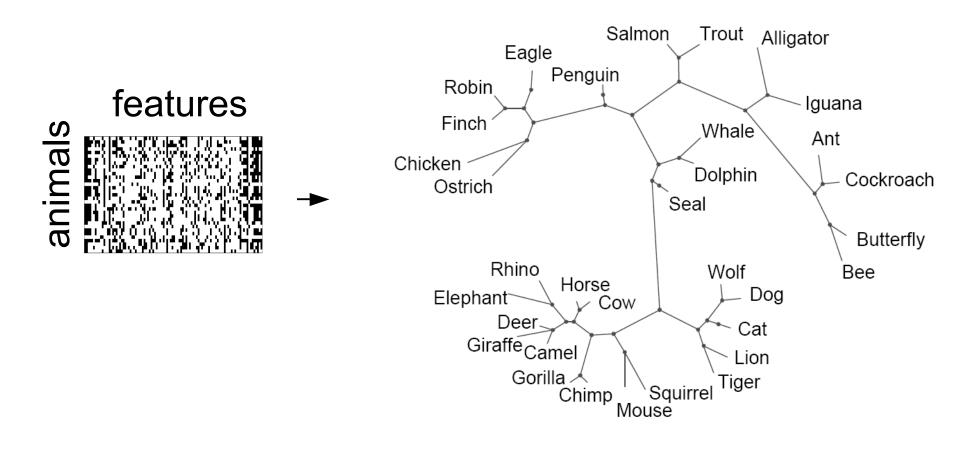
$$p(f) \propto \exp\left(-\frac{1}{4}\sum_{i,j}\frac{(f_i - f_j)^2}{d_{ij}}\right)$$

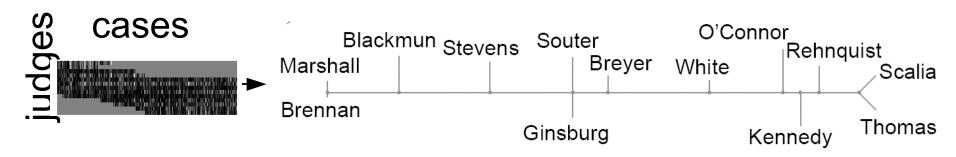
(Zhu, Lafferty & Ghahramani)



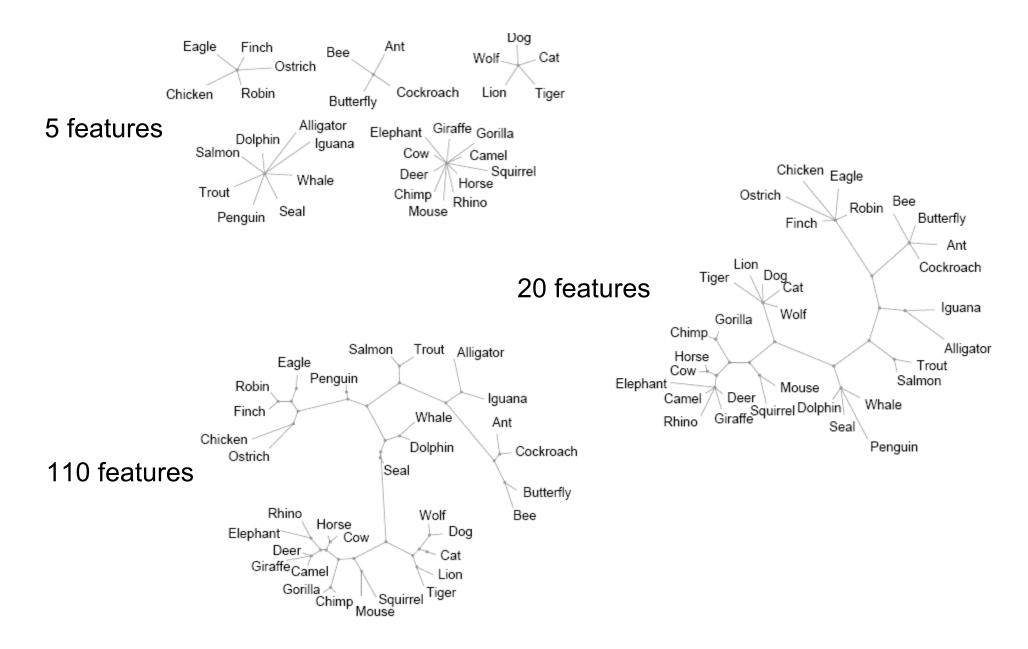
$$P(S, F|D, n) \propto P(D|S)P(S|F, n)P(F)$$

Feature data: results

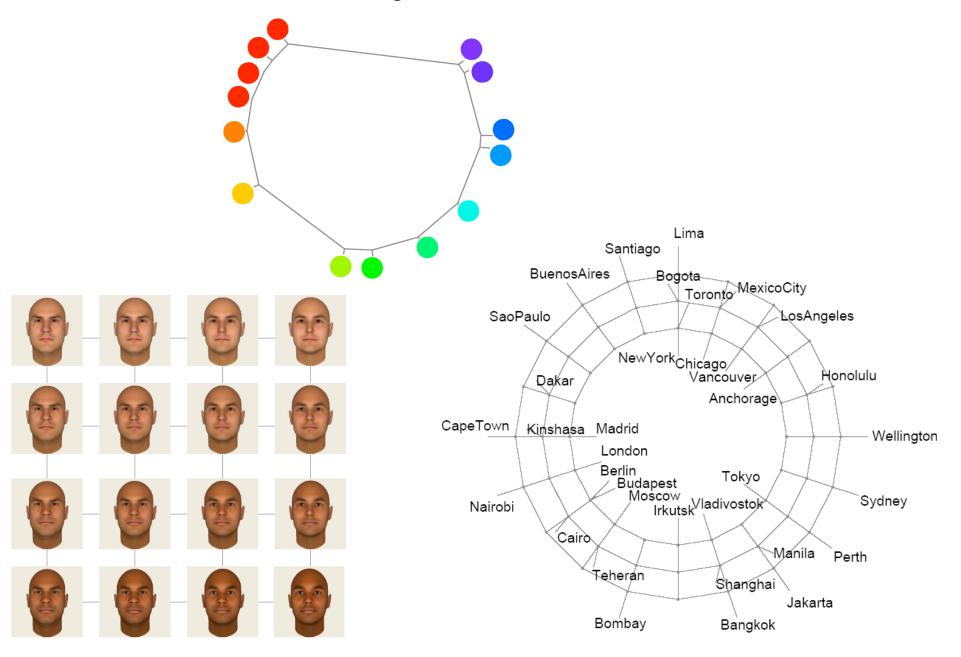




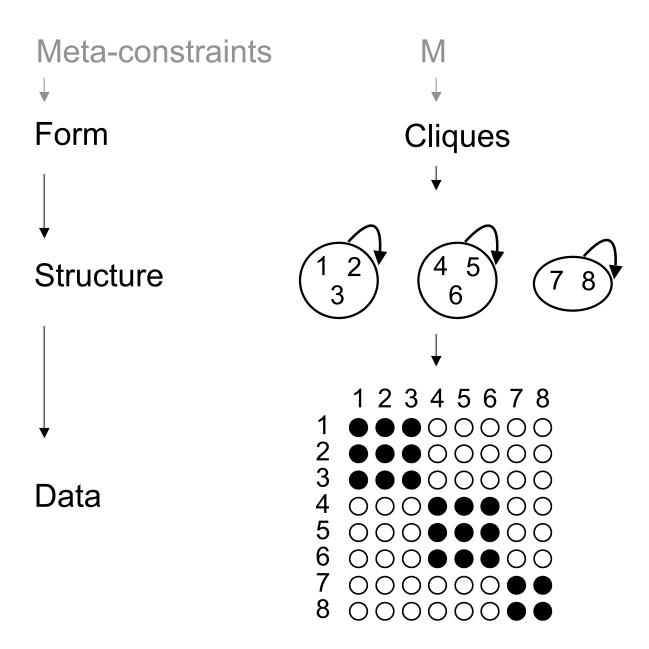
Developmental shifts



Similarity data: results



Relational data



Relational data: results

Primates

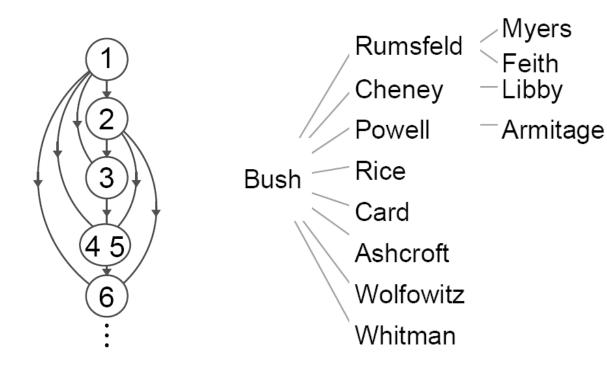
"x dominates y"

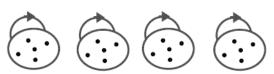
Bush cabinet

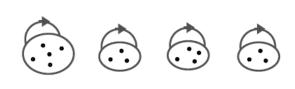
"x tells y"

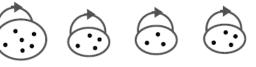
Prisoners

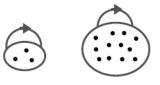
"x is friends with y"





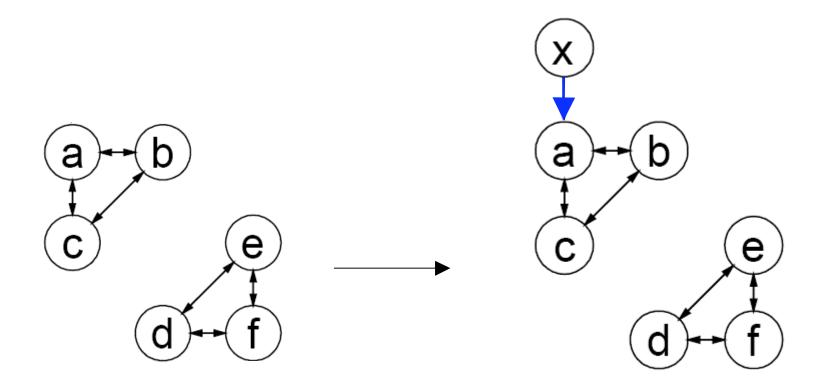






Why structural form matters

 Structural forms support predictions about new or sparsely-observed entities.

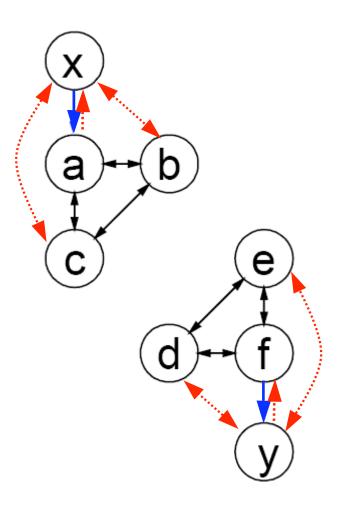


Bill sends a red envelope to Adam

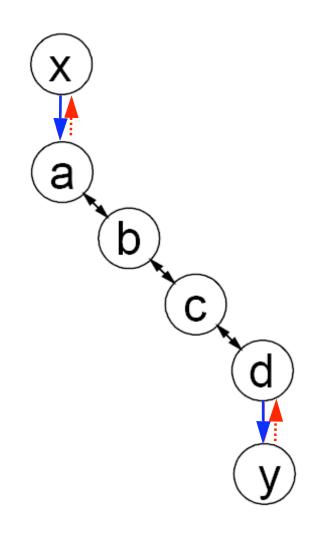
Observe

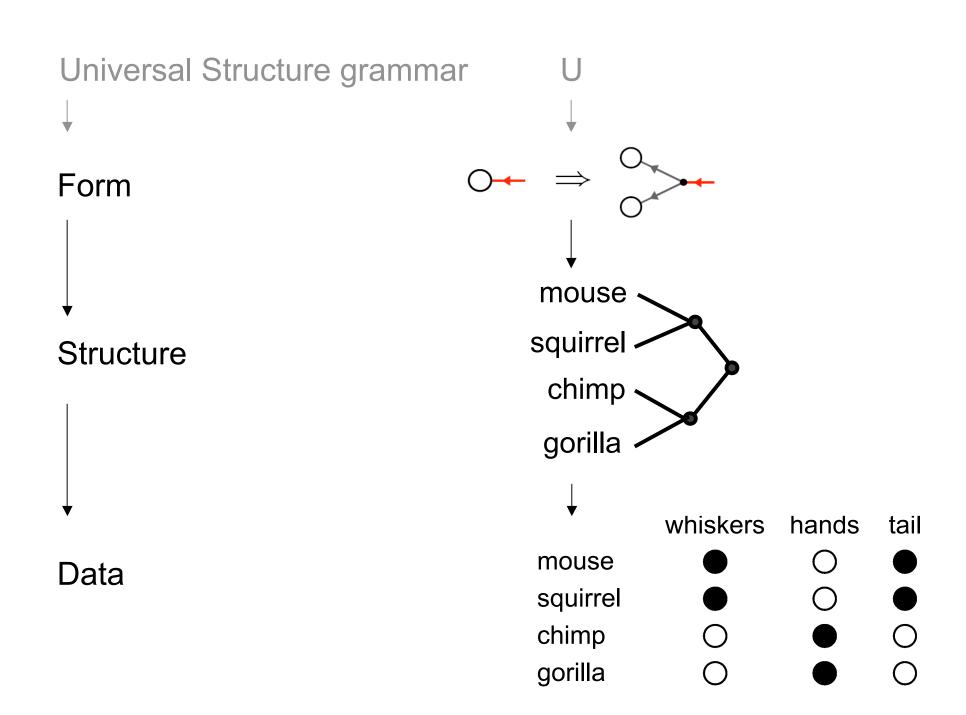
Experiment: Form discovery

Cliques (n = 8/12)

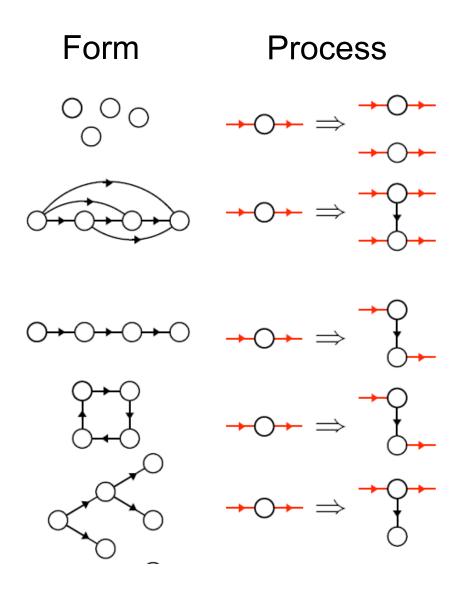


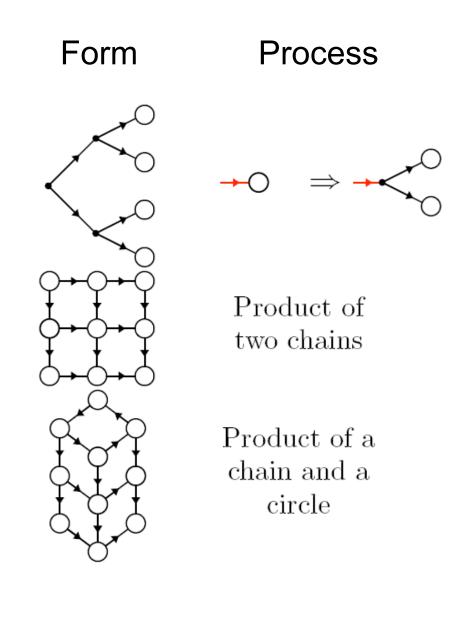
Chain (n = 7/12)





A hypothesis space of forms





Conclusions: Part 2

- Hierarchical Bayesian models provide a unified framework which helps to explain:
 - How abstract knowledge is acquired
 - How abstract knowledge is used for induction

Outline

- Learning structured representations
 - grammars
 - logical theories

Learning at multiple levels of abstraction

Handbook of Mathematical Psychology, 1963

9.	STOCHASTIC LEARNING THEORY	1
	by Saul Sternberg, University of Pennsylvania	
10.	STIMULUS SAMPLING THEORY	121
	by Richard C. Atkinson, Stanford University and William K. Estes, Stanford University	
11.	INTRODUCTION TO THE FORMAL ANALYSIS OF NATURAL LANGUAGES	269
	by Noam Chomsky, Massachusetts Institute of Technology and George A. Miller, Harvard University	
12.	FORMAL PROPERTIES OF GRAMMARS	323
	by Noam Chomsky, Massachusetts Institute of Technology	