Part IV: Monte Carlo and
nonparametric Bayes
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The Monte Carlo principle

 The expectation of f with respect to P can be
approximated by

1 n
EP(x)[f(x)] = ;Ef(x,)

where the x; are sampled from P(x)

« Example: the average # of spots on a die roll



The Monte Carlo principle

+
Ln

The law of large numbers

s

Average number of spots

ka
tn

] 10 20 30 40 a0 G0 i &0 a0 100

Number of rolls



Two uses of Monte Carlo methods

. For solving problems of probabilistic inference
involved 1n developing computational models

. As a source of hypotheses about how the mind
might solve problems of probabilistic inference



Making Bayesian inference easier

P(d | h)P(h)
Phld) =
(14) EP(dIh’)P(h’)

Evaluating the posterior probability of a hypothesis
requires considering all hypotheses

Modern Monte Carlo methods let us avoid this
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Modern Monte Carlo methods

« Sampling schemes for distributions with large state
spaces known up to a multiplicative constant

* Two approaches:
—1mportance sampling (and particle filters)
— Markov chain Monte Carlo



Importance sampling

Basic 1dea: generate from the wrong distribution,
assign weights to samples to correct for this

E,o[f®]= [ f(x)p(x)dx

- [ 122 gy
q(x)




Importance sampling

|
— Target p(x)

— Proposal g{x)

works when sampling from proposal 1s easy, target is hard



An alternative scheme...

L. f(X) ~ —zf(x )Z((;C:)) for x, ~ g(x)

Ef(x,»p((xi))
Ep(X)[f(x)] ~ = £

for x; ~ g(x)

works when p(x) 1s known up to a multiplicative constant



Likelihood weighting

* A particularly simple form of importance
sampling for posterior distributions

* Use the prior as the proposal distribution
* Weights:

p(hld)  p(dIh)p(h)  p(d1h)
p(hy  p(dpty  pd)

x p(dlh)



Likelihood weighting

* Generate samples of all variables except
observed variables

* Assign weights proportional to probability of
observed data given values in sample



Importance sampling

A general scheme for sampling from complex
distributions that have simpler relatives

Simple methods for sampling from posterior
distributions 1n some cases (easy to sample from
prior, prior and posterior are close)

Can be more efficient than simple Monte Carlo
— particularly for, e.g., tail probabilities

Also provides a solution to the question of how
people can update beliefs as data come 1n...



Particle filtering

(5055

(@) (@) (&) (4
We want to generate samples from P(s,|d,, ..., d,)
P(s, ld,....d,)xP(d,s,)P(s, 1d,,...,d;)

= P(d, S4)2P(S4Is3)P(S3Id1, d,)

We can use likelihood Welghtlng if we can sample
from P(s,|s;) and P(s;|d;, ..., d)




Particle filtering
P(s, ld,,....d,) < P(d, 15,) Y P(s, | 8,)P(s; 1d,.....d;)

3
sample from , weight by
P(s4]s5) P(dy|s4)
% ® > >
P EE— o > >
o > @ > @
.\. > .

samples from samples from weighted atoms samples from
P(s;|dy,...,d3) P(sgd,,....d;) P(sgd,,....,d;,)  P(s,d,,...,d,)



The promise of particle filters

* People need to be able to update probability
distributions over large hypothesis spaces as more
data become available

 Particle filters provide a way to do this with
limited computing resources...
— maintain a fixed finite number of samples

* Not just for dynamic models

— can work with a fixed set of hypotheses, although this
requires some further tricks for maintaining diversity



Markov chain Monte Carlo

* Basic 1dea: construct a Markov chain that will
converge to the target distribution, and draw
samples from that chain

 Just uses something proportional to the target
distribution (good for Bayesian inference!)

« Can work 1n state spaces of arbitrary (including
unbounded) size (good for nonparametric Bayes)



Markov chains

O

!

Transition matrix
T = P(xD|x®)

Variables x*) independent of all previous
variables given immediate predecessor x



An example: card shuftling

 Each state x\¥) is a permutation of a deck of
cards (there are 52! permutations)

* Transition matrix T indicates how likely one
permutation will become another

* The transition probabilities are determined by
the shuffling procedure
— riffle shuftle
— overhand

— one card



Convergence of Markov chains

 Why do we shuffle cards?

* Convergence to a uniform distribution takes
only 7 riffle shuffles...

» Other Markov chains will also converge to a
stationary distribution, 1 certain simple
conditions are satisfied (called “ergodicity”)

— e.g. every state can be reached 1n some number of
steps from every other state



Markov chain Monte Carlo

O

!

Transition matrix
T = P(x("D|x(9)

e States of chain are variables of interest

* Transition matrix chosen to give target
distribution as stationary distribution



Metropolis-Hastings algorithm

* Transitions have two parts:
— proposal distribution: Q(x(**D|x()
— acceptance: take proposals with probability

. P(xD) O(x0|x(+D)
A(X(t),X(t+1)) = mln( 1, P?X(t)) Q(X3é+1|)3|fx(t)) )




Metropolis-Hastings algorithm

p(x)




Metropolis-Hastings algorithm

p(x)




Metropolis-Hastings algorithm

p(x)




Metropolis-Hastings algorithm

p(x)

AN

A(x®, x(tt1)) = 0.5



Metropolis-Hastings algorithm

p(x)




Metropolis-Hastings algorithm

p(x)

ﬁg\

A(x(f), x(f"'l)) =]



Prab ability

Metropolis-Hastings 1n a shide




G1bbs sampling

Particular choice of proposal distribution

For variables x =x,, x,, ..., x

n

Draw x (D from P(x,|x_,)

-1

X, = x, 0D, x, 0D, x, 0D x 0 x ©

(this 1s called the full conditional distribution)



In a graphical model...
N
OO

OO OO

Sample each variable conditioned on 1ts Markov blanket



G1bbs sampling

(MacKay, 2002)



The magic of MCMC

* Since we only ever need to evaluate the relative
probabilities of two states, we can have huge
state spaces (much of which we rarely reach)

 In fact, our state spaces can be infinite

— common with nonparametric Bayesian models

« But... the guarantees i1t provides are asymptotic

— making algorithms that converge 1n practical
amounts of time 1s a significant challenge



MCMC and cognitive science

The main use of MCMC 1is for probabilistic
inference in complex models

The Metropolis-Hastings algorithm seems like a
good metaphor for aspects of development...

A form of cultural evolution can be shown to be
equivalent to Gibbs sampling (Griffiths & Kalish, 2007)

We can also use MCMC algorithms as the basis for
experiments with people...



Samples from Subject 3

(projected onto plane from LDA)




Three
“TFwo-uses of Monte Carlo methods

. For solving problems of probabilistic inference
involved 1n developing computational models

. As a source of hypotheses about how the mind
might solve problems of probabilistic inference

. As a way to explore people’s subjective
probability distributions



Outline

Nonparametric Bayesian models



Nonparametric Bayes

* Nonparametric models...
— can capture distributions outside parametric families
— have 1nfinitely many parameters
— grow 1n complexity with the data
* Provide a way to automatically determine how
much structure can be inferred from data
— how many clusters?
— how many dimensions?



How many clusters?

Nonparametric approach:
Dirichlet process mixture models



Mixture models

 Each observation 1s assumed to come from a
single (possibly previously unseen) cluster

* The probability that the ith sample belongs to the
kth cluster 1s

p(Zi =k lxi) & p(-xi lZi = k)p(zl = k)

* Where p(x;z,=k) reflects the structure of cluster &
(e.g. Gaussian) and p(z,=k) 1s 1ts prior probability



Dirichlet process mixture models

* Use a prior that allows infinitely many clusters
(but finitely many for finite observations)

e The ith sample 1s drawn from the kth cluster with
probability

[ 2 ng >0 (ie., kis old
P(k)=< "t> ' (. . )
<= ng, =0 (ie., k is new)

where a 1s a parameter of the model
(known as the “Chinese restaurant process”)



Nonparametric Bayes and cognition

* Nonparametic Bayesian models are useful for
answering questions about how much structure
people should infer from data

 Many cognitive science questions take this form
— how should we represent categories?
— what features should we 1dentify for objects?



Nonparametric Bayes and cognition

* Nonparametic Bayesian models are useful for
answering questions about how much structure
people should infer from data

 Many cognitive science questions take this form
— how should we represent categories?



The Rational Model of Categorization
(RMC; Anderson 1990; 1991)

* Computational problem: predicting a feature based
on observed data
— assume that category labels are just features

* Predictions are made on the assumption that objects
form clusters with similar properties
— each object belongs to a single cluster
— feature values likely to be the same within clusters

— the number of clusters 1s unbounded



Representation in the RMC

Flexible representation can interpolate between
prototype and exemplar models

Probability
Probability
D
g

Feature Value Feature Value



The “optimal solution”

The probability of the missing feature (i.e., the

category label) taking a certain value 1s

P(j|F.)

= > P(jlvn. F,)P

(20| F))

Tn posterior over partitions

where j 1s a feature value, I, are the observed features
of a set of n objects, and x, 1s a partition of objects into

clusters



The prior over partitions

* An object 1s assumed to have a constant probability of
joining same cluster as another object, known as the
coupling probability

e This allows some probability that a stimulus forms a new
cluster, so the probability that the ith object 1s assigned to
the Ath cluster 1s

: (':"If_?'-!: N = 0 (le. ]{? 18 Old)
P 1l—c)4tc2 ,
( k:) < ( ( 1 —) (_‘:)

| (I—c)4ce

ne =0 (i.e., k is new)



Equivalence

Neal (1998) showed that the prior for the RMC
and the DPMM are the same, with

a=(1—-2c)/c

. _(:1);+ —  ng >0 (ie., kis old)
RMC prior: P(k) = ”(]_;(_-_f) . :
T e =0 (e, kis new)

7 | . e _
oMM prior: () — { ey >0 (e, k is old)

v | o . .
——, ngp =0 (ie, k is new)




The computational challenge

The probability of the missing feature (1.e., the
category label) taking a certain value 1s

P(j|Fy) =Y P(jlan. Fo)P(x,|F,)

Ln

where j 1s a feature value, I*, are the observed
features of a set of n objects, and x, 1s a partition
of objects 1nto groups

n 1234 5 6 7 8 9 10

x| 1251552203 877414021147 115975



Anderson’s approximation

111

« Data observed sequentially

111 111 « Each object 1s deterministically

011 011 assigned to the cluster with the

0.54 0.46 . . ey
highest posterior probability

 (Call this the “Local MAP”
— choosing the cluster with the

_ maximum a posteriori
X probability

Final partition



Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference
involved in developing computational models

2. As a source of hypotheses about how the mind might
solve problems of probabilistic inference




Alternative approximation schemes

» There are several methods for making
approximations to the posterior in DPMMs

— (G1bbs sampling
— Particle filtering

* These methods provide asymptotic performance
guarantees (in contrast to Anderson’s
procedure)

(Sanborn, Griffiths, & Navarro, 2006)



G1ibbs sampling for the DPMM

Starting
Partition

 All the data are required at
Sample #1 once (a batch procedure)

* Each stimulus is sequentially

i i assigned to a cluster based on
011 011 .
100 100 the assignments of all of the
e remaining stimuli
I e « Assignments are made
o [0 ] [ probabilistically, using the

0.48 0.12 0.40

full conditional distribution




Particle filter for the DPMM

111

111
011

111

011

111

111
011

111

011

0.27 0.23 0.27 0.23
111 111 111 111 111
011 011 100 011 011
100 100 011 100 100
0.17 0.33 0.16 0.08 0.26

\

Sample #1

Sample #2

e Data are observed
sequentially

* The posterior
distribution at each
point 1s approximated
by a set of “particles”

 Particles are updated,
and a fixed number of
are carried over from
trial to trial



Approximating the posterior

Exact

s 0 e

Local MAP

Gibbs Sampler

i rm

Particle Filter

mlln_l

111 111 111 111 111

011 011 100 011 011

100 100 | | 011 100 100

111 111 111 111 111
011 011 100 011 011
100 100 011 100 100

For a single
order, the Local
MAP will
produce a single
partition

The Gibbs
sampler and
particle filter will
approximate the
exact DPMM
distribution



Order effects in human data

* The probabilistic model underlying the DPMM
does not produce any order effects

— follows from exchangeability
 But... human data shows order effects
(e.g., Medin & Bettger, 1994)
e Anderson and Matessa tested local MAP

predictions about order effects 1n an
unsupervised clustering experiment

(Anderson, 1990)



Anderson and Matessa’s Experiment

Front-Anchored

Order

scadsporm
scadstirm
sneksporb
snekstirb
sneksporm
snekstirm
scadsporb

scadstirb

End-Anchored

Order

snadstirb
snekstirb
scadsporm
sceksporm
sneksporm
snadsporm
scedstirb

scadstirb

Subjects were shown all
sixteen stimuli that had
four binary features

Front-anchored ordered
stimuli emphasized the
first two features 1n the
first eight trials; end-
anchored ordered
emphasized the last two



Anderson and Matessa’s Experiment

Proportion that are Divided Along a Front-Anchored Feature

Experimental Local Particle Particle Gibbs
Data MAP Filter (1) Filter (100) Sampler
Front-Anchored
Order 0.55 1.00 0.59 0.50 0.48
End-Anchored 0.30 0.00 0.38 0.50 0.49

Order



A “rational process model”

A rational model clarifies a problem and serves
as a benchmark for performance

* Using a psychologically plausible
approximation can change a rational model into
a “rational process model”

« Research 1n machine learning and statistics has
produced useful approximations to statistical
models which can be tested as general-purpose
psychological heuristics



Nonparametric Bayes and cognition

* Nonparametric Bayesian models are useful for
answering questions about how much structure
people should infer from data

 Many cognitive science questions take this form

— what features should we 1dentify for objects?



Learning the features of objects

* Most models of human cognition assume objects
are represented 1n terms of abstract features

* What are the features of this object?

* What determines what features we identify?

(Austerweil & Griffiths, 2009)









Binary matrix factorization

P(zi =11Z,Y) =1 — (1 — X)~%0Y5t2 (1 — €)

I Z
N N | KL ||| ,
X E” .
~ Noisy-Or
]




Binary matrix factorization

P(zi =11Z,Y) =1 — (1 — X)~%0Y5t2 (1 — €)

~ Noisy-Or

How should we infer the number of features?



The nonparametric approach

Assume that the total number of features 1s
unbounded, but only a finite number will be
expressed 1n any finite dataset

! X J Y
N NENEEEEEN
X
~ Noisy-Or oo E ]
®

Use the Indian buffet process as a prior on Z
(Griffiths & Ghahramani, 2006)



A e aE T

(Austerweil & Griffiths, 2009)



Summary

Sophisticated tools from Bayesian statistics can be
valuable 1n developing probabilistic models of
cognition...

Monte Carlo methods provide a way to perform
inference 1n probabilistic models, and a source of
1deas for process models and experiments

Nonparametric models help us tackle questions
about how much structure to infer, with unbounded
hypothesis spaces

We look forward to seeing what you do with them!






