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The Monte Carlo principle

• The expectation of f with respect to P can be
approximated by

   where the xi are sampled from P(x)

• Example: the average # of spots on a die roll
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The Monte Carlo principle
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Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference
involved in developing computational models

2. As a source of hypotheses about how the mind
might solve problems of probabilistic inference



Making Bayesian inference easier

! 

P(h | d) =
P(d | h)P(h)
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Evaluating the posterior probability of a hypothesis
requires considering all hypotheses

Modern Monte Carlo methods let us avoid this





Modern Monte Carlo methods

• Sampling schemes for distributions with large state
spaces known up to a multiplicative constant

• Two approaches:
– importance sampling (and particle filters)
– Markov chain Monte Carlo



Importance sampling

   Basic idea: generate from the wrong distribution,
assign weights to samples to correct for this
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Importance sampling

works when sampling from proposal is easy, target is hard



An alternative scheme…
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works when p(x) is known up to a multiplicative constant 



Likelihood weighting

• A particularly simple form of importance
sampling for posterior distributions

• Use the prior as the proposal distribution
• Weights:
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Likelihood weighting

• Generate samples of all variables except
observed variables

• Assign weights proportional to probability of
observed data given values in sample

X1 X2

X3X4



Importance sampling

• A general scheme for sampling from complex
distributions that have simpler relatives

• Simple methods for sampling from posterior
distributions in some cases (easy to sample from
prior, prior and posterior are close)

• Can be more efficient than simple Monte Carlo
– particularly for, e.g., tail probabilities

• Also provides a solution to the question of how
people can update beliefs as data come in…



Particle filtering

d1 d2 d3 d4

s1 s2 s3 s4

We want to generate samples from P(s4|d1, …, d4)
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We can use likelihood weighting if we can sample
from P(s4|s3) and P(s3|d1, …, d3)



Particle filtering
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The promise of particle filters

• People need to be able to update probability
distributions over large hypothesis spaces as more
data become available

• Particle filters provide a way to do this with
limited computing resources…
– maintain a fixed finite number of samples

• Not just for dynamic models
– can work with a fixed set of hypotheses, although this

requires some further tricks for maintaining diversity



Markov chain Monte Carlo

• Basic idea: construct a Markov chain that will
converge to the target distribution, and draw
samples from that chain

• Just uses something proportional to the target
distribution (good for Bayesian inference!)

• Can work in state spaces of arbitrary (including
unbounded) size (good for nonparametric Bayes)



   Variables x(t+1) independent of all previous
variables given immediate predecessor x(t)

Markov chains

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))



An example: card shuffling
• Each state x(t) is a permutation of a deck of

cards (there are 52! permutations)
• Transition matrix T indicates how likely one

permutation will become another
• The transition probabilities are determined by

the shuffling procedure
– riffle shuffle
– overhand
– one card



Convergence of Markov chains

• Why do we shuffle cards?
• Convergence to a uniform distribution takes

only 7 riffle shuffles…
• Other Markov chains will also converge to a

stationary distribution, if certain simple
conditions are satisfied (called “ergodicity”)
– e.g. every state can be reached in some number of

steps from every other state



Markov chain Monte Carlo

• States of chain are variables of interest
• Transition matrix chosen to give target

distribution as stationary distribution

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))



Metropolis-Hastings algorithm

• Transitions have two parts:
– proposal distribution: Q(x(t+1)|x(t))

– acceptance: take proposals with probability

     A(x(t),x(t+1)) = min( 1,                            )
P(x(t+1)) Q(x(t)|x(t+1))
P(x(t)) Q(x(t+1)|x(t))



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 0.5

p(x)



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 1

p(x)



Metropolis-Hastings in a slide



Gibbs sampling

Particular choice of proposal distribution

  For variables x = x1, x2, …, xn

  Draw xi
(t+1) from P(xi|x-i)

x-i = x1
(t+1), x2

(t+1),…, xi-1
(t+1)

, xi+1
(t)

, …, xn
(t)

(this is called the full conditional distribution)



In a graphical model…

X1 X2

X3X4

X1 X2

X3X4

X1 X2

X3X4

X1 X2

X3X4

Sample each variable conditioned on its Markov blanket



Gibbs sampling

(MacKay, 2002)

X1 X2

X1 X2



The magic of MCMC
• Since we only ever need to evaluate the relative

probabilities of two states, we can have huge
state spaces (much of which we rarely reach)

• In fact, our state spaces can be infinite
– common with nonparametric Bayesian models

• But… the guarantees it provides are asymptotic
– making algorithms that converge in practical

amounts of time is a significant challenge



MCMC and cognitive science
• The main use of MCMC is for probabilistic

inference in complex models
• The Metropolis-Hastings algorithm seems like a

good metaphor for aspects of development…
• A form of cultural evolution can be shown to be

equivalent to Gibbs sampling (Griffiths & Kalish, 2007)

• We can also use MCMC algorithms as the basis for
experiments with people…



Samples from Subject 3
(projected onto plane from LDA)



Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference
involved in developing computational models

2. As a source of hypotheses about how the mind
might solve problems of probabilistic inference

3. As a way to explore people’s subjective
probability distributions

Three
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Nonparametric Bayes
• Nonparametric models…

– can capture distributions outside parametric families
– have infinitely many parameters
– grow in complexity with the data

• Provide a way to automatically determine how
much structure  can be inferred from data
– how many clusters?
– how many dimensions?



How many clusters?

Nonparametric approach:
Dirichlet process mixture models



Mixture models

• Each observation is assumed to come from a
single (possibly previously unseen) cluster

• The probability that the ith sample belongs to the
kth cluster is

• Where p(xi|zi=k) reflects the structure of cluster k
(e.g. Gaussian) and p(zi=k) is its prior probability

! 

p(zi = k | xi)" p(xi | zi = k)p(zi = k)



Dirichlet process mixture models

• Use a prior that allows infinitely many clusters
(but finitely many for finite observations)

• The ith sample is drawn from the kth cluster with
probability

   where α is a parameter of the model
(known as the “Chinese restaurant process”)



Nonparametric Bayes and cognition

• Nonparametic Bayesian models are useful for
answering questions about how much structure
people should infer from data

• Many cognitive science questions take this form
– how should we represent categories?
– what features should we identify for objects?



Nonparametric Bayes and cognition

• Nonparametic Bayesian models are useful for
answering questions about how much structure
people should infer from data

• Many cognitive science questions take this form
– how should we represent categories?
– what features should we identify for objects?



The Rational Model of Categorization
(RMC; Anderson 1990; 1991)

• Computational problem: predicting a feature based
on observed data
– assume that category labels are just features

• Predictions are made on the assumption that objects
form clusters with similar properties
– each object belongs to a single cluster
– feature values likely to be the same within clusters
– the number of clusters is unbounded



Representation in the RMC
Flexible representation can interpolate between

prototype and exemplar models
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The “optimal solution”
   The probability of the missing feature (i.e., the

category label) taking a certain value is

    where j is a feature value, Fn are the observed features
of a set of n objects, and xn is a partition of objects into
clusters

posterior over partitions



The prior over partitions
• An object is assumed to have a constant probability of

joining same cluster as another object, known as the
coupling probability

• This allows some probability that a stimulus forms a new
cluster, so the probability that the ith object is assigned to
the kth cluster is



Equivalence
   Neal (1998) showed that the prior for the RMC

and the DPMM are the same, with
 

RMC prior:

DPMM  prior:



The computational challenge
   The probability of the missing feature (i.e., the

category label) taking a certain value is

   where j is a feature value, Fn are the observed
features of a set of n objects, and xn is a partition
of objects into groups

  n       1 2 3  4   5    6     7      8        9        10

|xn|      1 2 5 15 52 203 877 4140 21147 115975



Anderson’s approximation
• Data observed sequentially
• Each object is deterministically

assigned to the cluster with the
highest posterior probability

• Call this the “Local MAP”
– choosing the cluster with the

maximum a posteriori
probability
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Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference
involved in developing computational models

2. As a source of hypotheses about how the mind might
solve problems of probabilistic inference



Alternative approximation schemes

• There are several methods for making
approximations to the posterior in DPMMs
– Gibbs sampling
– Particle filtering

• These methods provide asymptotic performance
guarantees (in contrast to Anderson’s
procedure)

(Sanborn, Griffiths, & Navarro, 2006)



Gibbs sampling for the DPMM
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• All the data are required at
once (a batch procedure)

• Each stimulus is sequentially
assigned to a cluster based on
the assignments of all of the
remaining stimuli

• Assignments are made
probabilistically, using the
full conditional distribution



Particle filter for the DPMM
• Data are observed

sequentially
• The posterior

distribution at each
point is approximated
by a set of “particles”

• Particles are updated,
and a fixed number of
are carried over from
trial to trial
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Approximating the posterior

• For a single
order, the Local
MAP will
produce a single
partition

• The Gibbs
sampler and
particle filter will
approximate the
exact DPMM
distribution
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Order effects in human data
• The probabilistic model underlying the DPMM

does not produce any order effects
– follows from exchangeability

• But… human data shows order effects
(e.g., Medin & Bettger, 1994)

• Anderson and Matessa tested local MAP
predictions about order effects in an
unsupervised clustering experiment

(Anderson, 1990)



Anderson and Matessa’s Experiment

• Subjects were shown all
sixteen stimuli that had
four binary features

• Front-anchored ordered
stimuli emphasized the
first two features in the
first eight trials; end-
anchored ordered
emphasized the last two
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Front-Anchored
Order

End-Anchored
Order

Experimental
Data

0.55

0.30

Local
MAP

1.00

0.00

Particle
Filter (1)

0.59

0.38

Particle
Filter (100)

0.50

0.50

Gibbs
Sampler

0.48

0.49

Proportion that are Divided Along a Front-Anchored Feature

Anderson and Matessa’s Experiment



A “rational process model”
• A rational model clarifies a problem and serves

as a benchmark for performance
• Using a psychologically plausible

approximation can change a rational model into
a “rational process model”

• Research in machine learning and statistics has
produced useful approximations to statistical
models which can be tested as general-purpose
psychological heuristics



Nonparametric Bayes and cognition

• Nonparametric Bayesian models are useful for
answering questions about how much structure
people should infer from data

• Many cognitive science questions take this form
– how should we represent categories?
– what features should we identify for objects?



Learning the features of objects

• Most models of human cognition assume objects
are represented in terms of abstract features

• What are the features of this object?

• What determines what features we identify?

(Austerweil & Griffiths, 2009)







Binary matrix factorization

×



Binary matrix factorization

×

How should we infer the number of features?



The nonparametric approach

×

Use the Indian buffet process as a prior on Z

Assume that the total number of features is
unbounded, but only a finite number will be

expressed in any finite dataset

(Griffiths & Ghahramani, 2006)



(Austerweil & Griffiths, 2009)



Summary

• Sophisticated tools from Bayesian statistics can be
valuable in developing probabilistic models of
cognition…

• Monte Carlo methods provide a way to perform
inference in probabilistic models, and a source of
ideas for process models and experiments

• Nonparametric models help us tackle questions
about how much structure to infer, with unbounded
hypothesis spaces

• We look forward to seeing what you do with them!




