Publications

View By Topic:
All Topics
CI Causal Induction
CD Cognitive Development
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning
E Education
F Foundations
IB Inductive Biases
NBM Nonparametric Bayesian Models
P Perception
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SC Social Cognition
SML Statistical Models of Language

(Click on an author's name to view all papers by that author.)


Filter publications

By Chang, M.
DMRL
NBM
Chang, M., Dayan, A. L., Meier, F., Griffiths, T. L., Levine, S., & Zhang, A. (2023). Neural Constraint Satisfaction: Hierarchical abstraction for combinatorial generalization in object rearrangement. Proceedings of the 11th International Conference on Learning Representations. (pdf)
P
SML
Dedhia, B., Chang, M., Snell, J. C., Griffiths, T. L., & Jha, N. K. (2023). Im-Promptu: In-context composition from image prompts. Advances in Neural Information Processing Systems 37. (preprint)
S&C
Chang, M., Griffiths, T. L., & Levine, S. (2022). Object representations as fixed points: Training iterative refinement algorithms with implicit differentiation. Advances in Neural Information Processing Systems 36. (pdf)
DMRL
Chang, M., Kaushik, S., Weinberg, S. M., Griffiths, T., & Levine, S. (2020). Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions. Proceedings of the International Conference on Machine Learning. (pdf)
F
RPM
Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Lieder, F. (2019). Doing more with less: meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences, 29, 24-30. (pdf)
DMRL
RPM
Chang, M. B., Gupta, A., Levine, S., & Griffiths, T. L. (2019). Automatically composing representation transformations as a means for generalization. Proceedings of the 7th International Conference on Learning Representations (ICLR) 2019. (pdf)
DMRL
Sanborn, S., Bourgin, D. D., Chang, M., & Griffiths, T. L. (2018). Representational efficiency outweighs action efficiency in human program induction. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)

© 2025 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University