Dubey, R., Griffiths, T. L., & Dayan, P. (2022). The pursuit of happiness: A reinforcement learning perspective on habituation and comparisons. PLoS Computational Biology, 18(8), e1010316. (pdf)
Ho, M. K., & Griffiths, T. L. (2022). Cognitive science as a source of forward and inverse models of human decisions for robotics and control. Annual Review of Control, Robotics, and Autonomous Systems, 5, 33-53. (pdf)
Krafft, P. M., & Griffiths, T. L. (2018). Levels of analysis in computational social science. Proceedings of the 40th Annual Conference of the Cognitive Science Society.(pdf)
Paxton, A., & Griffiths, T. L.(2017). Finding the traces of behavioral and cognitive processes in big data and naturally occurring datasets. Behavior Research Methods, 49(5), 1630-1638.(pdf)
Suchow, J. W., Bourgin, D. D., & Griffiths, T. L. (2017). Evolution in mind: Evolutionary dynamics, cognitive processes, and Bayesian inference. Trends in Cognitive Sciences, 21(7), 522-530. (pdf)
Suchow, J. W., & Griffiths, T. L. (2016). Rethinking experiment design as algorithm design. CrowdML – NIPS '16 Workshop on Crowdsourcing and Machine Learning. (pdf)
Sanborn, A. N., & Griffiths, T. L. (2015). Exploring the structure of mental representations by implementing computer algorithms with people. In Raaijmakers, J. G. W., Criss, A. H., Goldstone, R. L., Nosofsky, R. M., & Steyvers, M. (Eds.). Cognitive Modeling in Perception and Memory: A Festschrift for Richard M. Shiffrin. New York: Psychology Press. (pdf)
Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7, 217-229. (pdf)
Griffiths, T. L., Tenenbaum, J. B., & Kemp, C. (2012). Bayesian inference. In K. J. Holyoak & R. G. Morrison, (Eds.) Oxford Handbook of Thinking and Reasoning. Oxford: Oxford University Press. (book)
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263-268. (pdf)
Griffiths, T. L., Austerweil, J. L., & Berthiaume, V. G. (2012). Comparing the inductive biases of simple neural networks and Bayesian models. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Griffiths, T. L. (2010). Bayesian models as tools for exploring inductive biases. In M. Banich & D. Caccamise (Eds.) Generalization of knowledge: Multidisciplinary perspectives. New York: Psychology Press.
Griffiths, T. L., & Yuille, A. (2008). A primer on probabilistic inference. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In Ron Sun (ed.), The Cambridge handbook of computational cognitive modeling. Cambridge University Press. (pdf)
Griffiths, T. L., & Yuille, A. (2006). A primer on probabilistic inference. Trends in Cognitive Sciences. Supplement to special issue on Probabilistic Models of Cognition (volume 10, issue 7). (pdf)