Publications

View By Topic:
All Topics
CI Causal Induction
CD Cognitive Development
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning
E Education
F Foundations
IB Inductive Biases
NBM Nonparametric Bayesian Models
P Perception
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SC Social Cognition
SML Statistical Models of Language

(Click on an author's name to view all papers by that author.)


Filter publications

By Liu, R.
F
Ku, A., Campbell, D., Bai, X., Geng, J., Liu, R., Marjieh, R., McCoy, R. T., Nam, A., Sucholutsky, I., Veselovsky, V., Zhang, L., Zhu, J. Q., & Griffiths, T. L. (2025). Using the tools of cognitive science to understand large language models at different levels of analysis. (preprint)
SC
SML
Liang, K., Hu, H., Liu, R., Griffiths, T. L., & Fisac, J. F. (2025). RLHS: Mitigating misalignment in RLHF with hindsight simulation. (preprint)
SC
SML
Liu, R., Geng, J., Peterson, J. C., Sucholutsky, I., & Griffiths, T. L. (2025). Large language models assume people are more rational than we really are. Proceedings of the 13th International Conference on Learning Representations (ICLR).(pdf)
PR
SML
Liu, R., Geng, J., Wu, A. J., Sucholutsky, I., Lombrozo, T., & Griffiths, T. L. (2025). Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking makes humans worse. Proceedings of the 42nd International Conference on Machine Learning (ICML).(pdf)
F
Ying, L., Collins, K. M., Wong, L., Sucholutsky, I., Liu, R., Weller, A., Shu, T., Griffiths, T. L., & Tenenbaum, J. B. (2025). On benchmarking human-like intelligence in machines. (preprint)
SC
SML
Liu, R., Sumers, T. R., Dasgupta, I., & Griffiths, T. L. (2024). How do large language models navigate conflicts between honesty and helpfulness? Proceedings of the 41st International Conference on Machine Learning (ICML). (pdf)
SC
SML
Liu, R., Yen, H., Marjieh, R., Griffiths, T. L., & Krishna, R. (2023). Improving interpersonal communication by simulating audiences with language models. 45th Annual Meeting of the Cognitive Science Society. (pdf)

© 2025 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University