Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

By Kumar, S.
P
Campbell, D., Kumar, S., Giallanza, T., Griffiths, T. L., & Cohen, J. D. (2024). Human-Like Geometric Abstraction in Large Pre-trained Neural Networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
SML
Kumar, S., Marjieh, R., Zhang, B., Campbell, D., Hu, M. Y., Bhatt, U., Lake, B. M., & Griffiths, T. L. (2024). Comparing Abstraction in Humans and Large Language Models Using Multimodal Serial Reproduction. 46th Annual Meeting of the Cognitive Science Society. (pdf)
SML
Kumar, S., Sumers, T. R., Yamakoshi, T., Goldstein, A., Hasson, U., Norman, K. A., Griffiths, T. L., Hawkins, R. D., & Nastase, S. A. (2024). Shared functional specialization in transformer-based language models and the human brain. Nature Communications, 15(1), 5523. (pdf)
P
PR
Marjieh, R., Kumar, S., Campbell, D., Zhang, L., Bencomo, G., Snell, J., & Griffiths, T. L. (2024). Using Contrastive Learning with Generative Similarity to Learn Spaces that Capture Human Inductive Biases. (preprint)
P
Campbell, D., Kumar, S., Giallanza, T., Cohen, J. D., & Griffiths, T. L. (2023). Relational constraints on neural networks reproduce human biases towards abstract geometric regularity. (preprint)
F
Griffiths, T. L., Kumar, S., & McCoy, R. T. (2023). On the hazards of relating representations and inductive biases. Behavioral and Brain Sciences, 46, e275. (pdf)
DMRL
Kumar, S., Dasgupta, I., Daw, N. D., Cohen, J. D., Griffiths, T. L. (2023). Disentangling abstraction from statistical pattern matching in human and machine learning. PLoS Computational Biology 19(8). (pdf)
SML
DMRL
Kumar, S., Correa, C. G., Dasgupta, I., Marjieh, R., Hu, M. Y., Hawkins, R.D., Daw, N. D., Cohen, J. D., Narasimhan, K. R., & Griffiths, T. L. (2022). Using Natural Language and Program Abstractions to Instill Human Inductive Biases in Machines. Advances in Neural Information Processing Systems, 36. (preprint)
DMRL
Kumar, S., Dasgupta, I., Cohen, J. D., Daw, N. D., & Griffiths, T. L. (2021). Meta-learning of structured task distributions in humans and machines. Proceedings of the 9th International Conference on Learning Representations (ICLR). (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University