Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

By McCoy, R.
F
PR
Griffiths, T. L., Zhu, J. Q., Grant, E., & McCoy, R. T. (2024). Bayes in the age of intelligent machines. Current Directions in Psychological Science, 33(5), 283-291. (pdf)
PR
S&C
Marinescu, I. R., Thomas McCoy, R. T., & Griffiths, T. (2024). Distilling Symbolic Priors for Concept Learning into Neural Networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
F
SML
McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D., & Griffiths, T. L. (2024). Embers of autoregression show how large language models are shaped by the problem they are trained to solve. PNAS, 121(41), e2322420121. (pdf)
F
Griffiths, T. L., Kumar, S., & McCoy, R. T. (2023). On the hazards of relating representations and inductive biases. Behavioral and Brain Sciences, 46, e275. (pdf)
SML
McCoy, R. T., & Griffiths, T. L. (2023). Modeling rapid language learning by distilling Bayesian priors into artificial neural networks. (preprint)
SML
McCoy, R. T., Grant, E., Smolensky, P., Griffiths, T. L., & Linzen, T. (2020). Universal linguistic inductive biases via meta-learning. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University