Publications

View By Topic:
All Topics
CI Causal Induction
CD Cognitive Development
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning
E Education
F Foundations
IB Inductive Biases
NBM Nonparametric Bayesian Models
P Perception
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SC Social Cognition
SML Statistical Models of Language

(Click on an author's name to view all papers by that author.)


Filter publications

By Zhu, J.
DMRL
Elga, A., Zhu, J. Q., & Griffiths, T. L. (2025). People make suboptimal decision about existential risks. Cognition, 265, 106216. (pdf)
F
Ku, A., Campbell, D., Bai, X., Geng, J., Liu, R., Marjieh, R., McCoy, R. T., Nam, A., Sucholutsky, I., Veselovsky, V., Zhang, L., Zhu, J. Q., & Griffiths, T. L. (2025). Using the tools of cognitive science to understand large language models at different levels of analysis. (preprint)
SML
Xie, H., Zhu, J., Xiong, H., Wilson, R., & Griffiths, T. (2025). Reasoning Across Minds and Machines. Proceedings of the Annual Meeting of the Cognitive Science Society, 47. (pdf)
F
PR
Zhu, J. Q., & Griffiths, T. L. (2025). Computation-limited Bayesian updating: A resource-rational analysis of approximate Bayeian inference. Psychological Review. (pdf)
DMRL
Zhu, J. Q., Peterson, J. C., Enke, B., & Griffiths, T. L. (2025). Capturing the complexity of human strategic decision-making with machine learning. Nature Human Behaviour. (pdf)
SML
Zhu, J. Q., Yan, H., & Griffths, T. L. (2025). Steering risk preferences in large language models by aligning behavioral and neural representations. (preprint)
PR
SML
Zhu, J. Q., Yan, H., & Griffiths, T. L. (2025). Recovering event probabilities from large language model embeddings via axiomatic constraints. (preprint)
DMRL
SML
Zhu, J. Q., Xie, H., Arumugam, D., Wilson, R. C., & Griffiths, T. L. (2025). Using reinforcement learning to train large language models to explain human decisions. (preprint)
F
PR
Griffiths, T. L., Zhu, J. Q., Grant, E., & McCoy, R. T. (2024). Bayes in the age of intelligent machines. Current Directions in Psychological Science, 33(5), 283-291. (pdf)
PR
SML
Zhu, J. Q., & Griffiths, T. L. (2024). Incoherent probability judgments in large language models. 46th Annual Meeting of the Cognitive Science Society. (pdf)
PR
SML
Zhu, J. Q., & Griffiths, T. L. (2024). Eliciting the priors of large language models using iterated in-context learning. (preprint)
IB
S&C
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering mental representations from large language models with Markov chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
DMRL
SML
Zhu, J. Q., Yan, H., & Griffiths, T. L. (2024). Language models trained to do arithmetic predict human risky and intertemporal choice. (preprint)
DMRL
Xia, F., Zhu, J., & Griffiths, T. (2023). Comparing human predictions from expert advice to on-line optimization algorithms. 45th Annual Meeting of the Cognitive Science Society. (pdf)
RPM
Zhu, J. Q., Sanborn, A., Chater, N., & Griffiths, T. (2023). Computation-limited Bayesian updating. 45th Annual Meeting of the Cognitive Science Society. (pdf)

© 2026 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University