Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

Decision Making and Reinforcement Learning
DMRL
Zhu, J. Q., Peterson, J. C., Enke, B., & Griffiths, T. L. (2024) Capturing the Complexity of Human Strategic Decision-Making with Machine Learning. (preprint)
RPM
DMRL
Cornell, C. A., Norman, K. A., Griffiths, T. L., & Zhang, Q. (2024). Improving memory search through model-based cue selection. Psychological Science, 35 (1). (pdf)
DMRL
Correa, C. G., Griffiths, T. L., & Daw, N. D. (2024). Program-Based Strategy Induction for Reinforcement Learning. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
DMRL
Dubey, R., Hardy, M., Griffiths, T., & Bhui, R. (2024). AI-generated visuals of car-free American cities help increase support for sustainable transport policies. Nature Sustainability, 7, 399–403. (pdf)
DMRL
Kuperwajs, I., van Opheusden, B., Russek, E., & Griffiths, T. L. (2024). Learning from rewards and social information in naturalistic strategic behavior. (preprint)
DMRL
Mancoridis, M., Sumers, T., & Griffiths, T. (2024). Publish or Perish: Simulating the Impact of Publication Policies on Science. 46th Annual Meeting of the Cognitive Science Society. (pdf)
DMRL
Marjieh, R., Gokhale, A., Bullo, F. and Griffiths, T. L., (2024). Task Allocation in Teams as a Multi-Armed Bandit. In Proceedings of Collective Intelligence.(pdf)
RPM
DMRL
Mieczkowski, E., Turner, C. R., Vélez, N., & Griffiths, T. (2024). Explaining Social Loafing via Multiprocessing Efficiency. 46th Annual Meeting of the Cognitive Science Society. (pdf)
RPM
DMRL
Mieczkowski, E., Turner, C. R., Vélez, N., & Griffiths, T. (2024). People Evaluate Idle Collaborators Based on their Impact on Task Efficiency. (preprint)
RPM
DMRL
Zhao, B., Velez, N., & Griffiths, T. L. (2024). A Rational Model of Innovation by Recombination. 46th Annual Meeting of the Cognitive Science Society. (pdf)
DMRL
Agrawal, M., Peterson, J. C., Cohen, J. D., & Griffiths, T. L. (2023). Stress, intertemporal choice, and mitigation behavior during the COVID-19 pandemic. Journal of Experimental Psychology: General, 152(9), 2695–2702. (pdf)
RPM
DMRL
Callaway, F., Griffiths, T. L., & Karreskog, G. (2023). Rational heuristics for one-shot games. (preprint)
RPM
DMRL
Callaway, F., Griffiths, T. L., Norman, K. A., & Zhang, Q. (2023). Optimal metacognitive control of memory recall. Psychological Review. (pdf)
RPM
DMRL
Callaway, F., Hardy, M., & Griffiths, T. L. (2023). Optimal nudging for cognitively bounded agents: A framework for modeling, predicting, and controlling the effects of choice architectures. Psychological Review. (preprint)
NBM
DMRL
Chang, M., Dayan, A. L., Meier, F., Griffiths, T. L., Levine, S., & Zhang, A. (2023). Neural Constraint Satisfaction: Hierarchical abstraction for combinatorial generalization in object rearrangement. Proceedings of the 11th International Conference on Learning Representations. (pdf)
RPM
DMRL
Correa, C. G., Ho, M. K., Callaway, F., Daw, N. D., Griffiths, T. L. (2023). Humans decompose tasks by trading off utility and computational cost. PLOS Computational Biology, 19(6), e1011087. (pdf)
DMRL
Correa, C. G., Sanborn, S., Ho, M. K., Callaway, F., Daw, N. D., & Griffiths, T. L. (2023). Exploring the hierarchical structure of human plans via program generation. (preprint)
CEIL
DMRL
Hardy, M. D., Thompson, B., Krafft, P. M., & Griffiths, T. L. (2023). Resampling reduces bias amplification in experimental social networks. Nature Human Behavior, 7, 2084-2098. (pdf)
DMRL
He, R., Correa, C. G., Griffiths, T. L., & Ho, M. K. (2023). Structurally guided task decomposition in spatial navigation tasks (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 38. (pdf)
DMRL
Ho, M. K., Cohen, J. D., & Griffiths, T. L. (2023). Rational simplification and rigidity in human planning. Psychological Science, 34(11), 1281-1292. (pdf)
RPM
DMRL
Jain, Y. R., Callaway, F., Griffiths, T. L., Dayan, P., He, R., Krueger, P. M., & Lieder, F. (2023). A computational process-tracing method for measuring people’s planning strategies and how they change over time. Behavior Research Methods, 55, 2037–2079. (pdf)
DMRL
Kumar, S., Dasgupta, I., Daw, N. D., Cohen, J. D., Griffiths, T. L. (2023). Disentangling abstraction from statistical pattern matching in human and machine learning. PLoS Computational Biology 19(8). (pdf)
DMRL
Oktar, K., Sucholutsky, I., Lombrozo, T., & Griffiths, T. L. (2023). Dimensions of disagreement: Unpacking divergence and misalignment in cognitive science and artificial intelligence. (preprint)
SML
DMRL
Peng, A., Sucholutsky, I., Li, B., Sumers, T., Griffiths, T., Andreas, J., & Shah, J. (2023). Learning with language-guided state abstractions. RSS Workshop on Social Intelligence in Humans and Robots. (pdf)
DMRL
Peterson, J., Mancoridis, M., & Griffiths, T. (2023). To each their own theory: Exploring the limits of individual differences in decisions under risk. 45th Annual Meeting of the Cognitive Science Society. (pdf)
DMRL
Rane, S., Ho, M., Sucholutsky, I., & Griffiths, T. L. (2023). Concept alignment as a prerequisite for value alignment. AAAI 2024 Bridge on Collaborative AI and Modeling of Humans. (pdf)
RPM
DMRL
Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., & Griffiths, T. L. (2023). The computational challenges of means selection problems: Network structure of Goal Systems predicts human performance. Cognitive Science, 47(8), e13330. (pdf)
DMRL
Russek, E., Callaway, F., & Griffiths, T. L. (2023). Inverting cognitive models with machine learning to infer preferences from fixations. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence. (pdf)
DMRL
Shin, M., Kim, J., van Opheusden, B., & Griffiths, T. L. (2023). Superhuman artificial intelligence can improve human decision-making by increasing novelty. Proceedings of the National Academy of Sciences, 120(12), e2214840120. (pdf)
DMRL
Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu, A., Kim, B., Love, B. C., Grant, E., Achterberg, J., Tenenbaum, J. B., Collins, K. M., Hermann, K. L., Oktar, K., Greff, K., Hebart, M. N., Jacoby, N., Marjieh, R., Geirhos, R., Chen, S., Kornblith, S., Rane, S., Konkle, T., O'Connell, T. P., Unterthiner, T., Lampinen, A. K., Müller, K.-R., Toneva, M., & Griffiths, T. L. (2023). Getting aligned on representational alignment. (preprint)
RPM
DMRL
Sukhov, N., Dubey, R., Duke, A., & Griffiths, T. (2023). When to keep trying and when to let go: Benchmarking optimal quitting. (preprint)
SML
DMRL
Sumers, T. R., Ho, M. K., Griffiths, T. L., & Hawkins, R. D. (2023). Reconciling truthfulness and relevance as epistemic and decision-theoretic utility. Psychological Review. (pdf)
P
DMRL
Turner, C. R., Morgan, T., & Griffiths, T. (2023). The joint evolution of sensory systems and decision policy allows cognition. 45th Annual Meeting of the Cognitive Science Society. (pdf)
DMRL
Xia, F., Zhu, J., & Griffiths, T. (2023). Comparing human predictions from expert advice to on-line optimization algorithms. 45th Annual Meeting of the Cognitive Science Society. (pdf)
SML
DMRL
Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., & Narasimhan, K. (2023). Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information Processing Systems, 37. (pdf)
RPM
DMRL
Bai, X., Fiske, S. T., & Griffiths, T. L. (2022). Globally inaccurate stereotypes can result from locally adaptive exploration. Psychological Science, 33(5) 671–684. (pdf)
RPM
DMRL
Callaway, F., Jain, Y. R., van Opheusden, B., Das, P., Iwama, G., Gul, S., Krueger, P. M., Becker, F., Griffiths, T. L., & Lieder, F. (2022). Leveraging artificial intelligence to improve people’s planning strategies. Proceedings of the National Academy of Sciences, 119(12), e2117432119. (pdf)
RPM
DMRL
Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P. M., Griffiths, T. L., & Lieder, F. (2022). Rational use of cognitive resources in human planning. Nature Human Behaviour, 6, 1–14. (pdf)
F
DMRL
Dubey, R., Griffiths, T. L., & Dayan, P. (2022). The pursuit of happiness: A reinforcement learning perspective on habituation and comparisons. PLoS Computational Biology, 18(8), e1010316. (pdf)
RPM
DMRL
Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., & Griffiths, T. L. (2022). People construct simplified mental representations to plan. Nature, 606(7912), 129-136. (pdf)
F
DMRL
Ho, M. K., & Griffiths, T. L. (2022). Cognitive science as a source of forward and inverse models of human decisions for robotics and control. Annual Review of Control, Robotics, and Autonomous Systems, 5, 33-53. (pdf)
SML
DMRL
Kumar, S., Correa, C. G., Dasgupta, I., Marjieh, R., Hu, M. Y., Hawkins, R.D., Daw, N. D., Cohen, J. D., Narasimhan, K. R., & Griffiths, T. L. (2022). Using Natural Language and Program Abstractions to Instill Human Inductive Biases in Machines. Advances in Neural Information Processing Systems, 36. (preprint)
RPM
DMRL
Russek, E., Acosta-Kane, D., van Opheusden, B., Mattar, M. G., & Griffiths, T. (2022). Time spent thinking in online chess reflects the value of computation. (preprint)
SML
DMRL
Sumers, T. R., Hawkins, R. D., Ho, M. K., Griffiths, T. L., & Hadfield-Menell, D. (2022). How to talk so AI will learn: Instructions, descriptions, and autonomy. Advances in Neural Information Processing Systems, 36. (pdf)
RPM
DMRL
Callaway, F., Rangel, A., & Griffiths, T. L. (2021). Fixation patterns in simple choice reflect optimal information sampling. PLOS Computational Biology, 17(3), e1008863. (pdf)
F
E
DMRL
Dubey, R., Ho, M. K., Mehta, H., & Griffiths, T. L. (2021). Aha! Moments correspond to meta-cognitive prediction errors. (preprint)
PR
DMRL
Gates, V., Callaway, F., Ho, M. K., Griffiths, T. (2021). A rational model of people's inferences about others' preferences based on response times. Cognition, 217, 104885. (pdf)
DMRL
Kumar, S., Dasgupta, I., Cohen, J. D., Daw, N. D., & Griffiths, T. L. (2021). Meta-learning of structured task distributions in humans and machines. Proceedings of the 9th International Conference on Learning Representations (ICLR). (pdf)
RPM
DMRL
Milli, S., Lieder, F., & Griffiths, T. L. (2021). A rational reinterpretation of dual-process theories. Cognition, 217, 104881. (pdf)
DMRL
Peterson, J. C., Bourgin, D., Agrawal, M., Reichman, D., & Griffiths, T. (2021). Using large-scale experiments and machine learning to discover theories of human decision-making. Science, 372(6547), 1209-1214. (pdf)
SML
DMRL
Sumers, T. R., Hawkins, R. D., Ho, M. K., & Griffiths, T. L. (2021). Extending rational models of communication from beliefs to actions. Proceedings of the 43rd Annual Meeting of the Cognitive Science Society. (pdf)
SML
DMRL
Sumers, T. R., Ho, M. K., Hawkins, R. D., Narasimhan, K. R., & Griffiths, T. L. (2021). Learning rewards from linguistic feedback. Proceedings of the 35th AAAI Conference on Artificial Intelligence. (pdf)
DMRL
Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up psychology via Scientific Regret Minimization. Proceedings of the National Academy of Sciences. (pdf)
DMRL
Alon, N., Cohen, J. D., Griffiths, T. L., Manurangsi, P., Reichman, D., Shinkar, I., Wagner, T., Yu, A. (2020). Multitasking capacity: Hardness results and improved constructions. SIAM Journal on Discrete Mathematics, 34(1), 885-903. (pdf)
RPM
DMRL
Callaway, F., Hardy, M., & Griffiths, T. L. (2020). Optimal nudging. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
DMRL
Chang, M., Kaushik, S., Weinberg, S. M., Griffiths, T., & Levine, S. (2020). Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions. Proceedings of the International Conference on Machine Learning. (pdf)
RPM
DMRL
Correa, C. G.*, Ho, M. K.*, Callaway, F., & Griffiths, T. L. (2020). Resource-rational Task Decomposition to Minimize Planning Costs. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
E
DMRL
Dubey, R., & Griffiths, T. L. (2020). Reconciling novelty and complexity through a rational analysis of curiosity. Psychological Review, 127(3), 455-476. (pdf)
DMRL
Dubey, R., Grant, E., Luo, M., Narasimhan, K. R., & Griffiths, T. L. (2020). Connecting context-specific adaptation in humans to meta-learning. (preprint)
F
DMRL
Gates, V., Griffiths, T. L., & Dragan, A. D. (2020). How to be helpful to multiple people at once. Cognitive Science, 44(6), e12841. (pdf)
DMRL
Ho, M. K., Abel, D., Cohen, J. D., Littman, M. L., & Griffiths, T. L. (2020). The Efficiency of Human Cognition Reflects Planned Information Processing. Proceedings of the 34th AAAI Conference on Artificial Intelligence. (pdf)
DMRL
Mormann, M., Griffiths, T. L., Janiszewski, C., Russo, J. E., Aribarg, A., Ashby, N. J., Bagchi, R., Bhatia, S., Kovacheva, M. M., & Mrkva, K. J. (2020). Time to pay attention to attention: using attention-based process traces to better understand consumer decision-making. Marketing Letters, 31, 381-392. (pdf)
P
DMRL
Sumers, T. R., Ho, M. K., & Griffiths, T. L. (2020). Show or tell? Demonstration is more robust to changes in shared perception than explanation. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
PR
DMRL
Hardy, M., & Griffiths, T. L. (2019). Demonstrating the impact of prior knowledge in risky choice. (preprint)
DMRL
Lieder, F., Chen, O. X., Krueger, P. M., & Griffiths, T. L. (2019). Cognitive prostheses for goal achievement. Nature Human Behaviour, 3(10), 1096-1106. (pdf)
F
DMRL
Ho, M. K., Abel, D., Griffiths, T. L., & Littman, M. L. (2019). The value of abstraction. Current Opinion in Behavioral Sciences, 29, 111-116. (pdf)
DMRL
Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S., Abbeel, P., & Dragan, A. (2019). On the Utility of Learning about Humans for Human-AI Coordination. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems, 32, 5174–5185. (pdf)
RPM
DMRL
Chang, M. B., Gupta, A., Levine, S., & Griffiths, T. L. (2019). Automatically composing representation transformations as a means for generalization. Proceedings of the 7th International Conference on Learning Representations (ICLR) 2019. (pdf)
PR
DMRL
Ho, M. K., Korman, J., & Griffiths, T. L. (2019). The computational structure of unintentional meaning. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
DMRL
Bourgin, D., Peterson, J. C., Reichman, D., Russell, S., & Griffiths, T. L. (2019). Cognitive model priors for predicting human decisions. Proceedings of the 36th International Conference on Machine Learning (ICML). (pdf)
RPM
DMRL
Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2019). Using machine learning to guide cognitive modeling: a case study in moral reasoning. Proceedings of the 41st Annual Conference of the Cognitive Science Society . (pdf)
DMRL
Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., & Griffiths, T. L. (2019). A cognitive tutor for helping people overcome present bias. Proceedings of the Fourth Multidisciplinary Conference on Reinforcement Learning and Decision Making. (pdf)
RPM
DMRL
Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., & Griffiths, T. L. (2018). The computational challenges of pursuing multiple goals: Network structure of goal systems predicts human performance. (preprint)https://psyarxiv.com/fqh3x/
RPM
DMRL
Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T.L. (2018). Rational metareasoning and the plasticity of cognitive control. PLoS Computational Biology, 14, e1006043. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). Empirical evidence for resource-rational anchoring and adjustment. Psychonomic Bulletin & Review, 25, 775-784. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). The anchoring bias reflects rational use of cognitive resources. Psychonomic Bulletin & Review, 25, 322-349. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., & Hsu, M (2018). Over-representation of extreme events in decision making reflects rational use of cognitive resources. Psychological Review, 125(1), 1-32. (pdf)
RPM
DMRL
Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., & Lieder, F. (2018). Learning to select computations. Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence. (pdf)
DMRL
Burns, K., Nematzadeh, A., Grant, E., Gopnik, A., & Griffiths, T. L. (2018). Exploiting attention to reveal shortcomings in memory models. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 378-380. (pdf)
DMRL
Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., & Efros, A. A. (2018). Investigating human priors for playing video games. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018). (pdf) (project website)
DMRL
Krueger, P. M., & Griffiths, T. L. (2018). Shaping model-free habits with model-based goals. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
DMRL
Sanborn, S., Bourgin, D. D., Chang, M., & Griffiths, T. L. (2018). Representational efficiency outweighs action efficiency in human program induction. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
RPM
DMRL
Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A resource-rational analysis of human planning. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
DMRL
Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational metareasoning. Psychological Review, 124(6), 762-794. (pdf)
PR
DMRL
Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-Menell, D., Palaniappan, M., Malik, D., Sastry, S. S., Griffiths, T. L., & Dragan, A. D. (2017). Pragmatic-Pedagogic Value Alignment. International Symposium on Robotics Research. (pdf)
DMRL
Krueger, P. M., Lieder, F., & Griffiths, T. L. (2017). Enhancing metacognitive reinforcement learning using reward structures and feedback. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
RPM
DMRL
Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017). An automatic method for discovering rational heuristics for risky choice. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University