Sucholutsky, I., Zhao, B., & Griffiths, T. L. (2024). Using Compositionality to Learn Many Categories from Few Examples. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Zhang, L., Nelson, L., & Griffiths, T. L. (2024). Analyzing the Benefits of Prototypes for Semi-Supervised Category Learning. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering Mental Representations from Large Language Models with Markov Chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
Jha, A., Peterson, J. C., & Griffiths, T. L. (2023). Extracting low‐dimensional psychological representations from convolutional neural networks. Cognitive Science, 47(1), e13226. (pdf)
Chang, M., Griffiths, T. L., & Levine, S. (2022). Object representations as fixed points: Training iterative refinement algorithms with implicit differentiation. Advances in Neural Information Processing Systems, 36.(pdf)
Dasgupta, I., Grant, E., & Griffiths, T. L. (2022). Distinguishing rule- and exemplar-based generalization in learning systems. Proceedings of the International Conference on Machine Learning.(pdf)
Dasgupta, I., & Griffiths, T. L. (2022). Clustering and the efficient use of cognitive resources. Journal of Mathematical Psychology, 109, 102675. (pdf)
Devraj, A., Zhang, Q., & Griffiths, T.L. (2021). The dynamics of exemplar and prototype representations depend on environmental statistics. Proceedings of the 43rd Annual Conference of the Cognitive Science Society. (pdf)
Bourgin, D., Abbott, J. T., & Griffiths, T. L. (2021). Recommendation as generalization: Using big data to evaluate cognitive models. Journal of Experimental Psychology: General, 150, 1398–1409. (pdf)
Jha, A., Peterson, J. C., & Griffiths, T. L. (2020). Extracting low-dimensional psychological representations from convolutional neural networks. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
Peterson, J. C., Chen, D., & Griffiths, T. L. (2020). Parallelograms revisited: Exploring the limitations of vector space models for simple analogies. Cognition, 205, 104440. (pdf)
Grant, E., Peterson, J. C., & Griffiths, T. (2019). Learning deep taxonomic priors for concept learning from few positive examples. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the correspondence between deep neural networks and human representations. Cognitive Science, 42, 2648-2669. (pdf)
Suchow, J. W., Peterson, J. C., & Griffiths, T. L. (2018). Learning a face space for experiments on human identity. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
Bourgin, D. D., Abbott, J. T., & Griffiths, T. L. (2018). Recommendation as generalization: Evaluating cognitive models in the wild. Proceedings of the 40th Annual Conference of the Cognitive Science Society.(pdf)
Peterson, J. C., Soulos, P., Nematzadeh, A., & Griffiths, T. L. (2018). Learning hierarchical visual representations in deep neural networks using hierarchical linguistic labels. Proceedings of the 40th Annual Conference of the Cognitive Science Society.(pdf)
Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Evaluating vector-space models of analogy. Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Peterson, J. C., & Griffiths, T. L. (2017). Evidence for the size principle in semantic and perceptual domains. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
Abbott, J. T., Griffiths, T. L., & Regier, T. (2016). Focal colors across languages are representative members of color categories. Proceedings of the National Academy of Sciences, 113(40), 11178-11183. (pdf)
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2016). Adapting deep network features to capture psychological representations. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf) (Winner of the Computational Modeling Prize in Perception/Action)
Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55-89. (pdf)
Whalen, A., Maurits, L., Pacer, M., & Griffiths, T. L. (2014). Cultural evolution with sparse testimony: When does the cultural ratchet slip? Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
Xu, J., Dowman, M., & Griffiths, T. L. (2013) Cultural transmission results in convergence towards colour term universals. Proceedings of the Royal Society, Series B.(pdf)
Griffiths, T. L., & Austerweil, J. L. (2012). Bayesian generalization with circular consequential regions. Journal of Mathematical Psychology, 56, 281-285. (pdf)
Hsu, A. S, Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2012). Identifying representations of categories of discrete items using Markov chain Monte Carlo with People. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Rafferty, A. N., Zaharia, M., & Griffiths, T. L. (2012). Optimally Designing Games for Cognitive Science Research. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Little, D., Lewandowsky, S., & Griffiths, T. L. (2012). A Bayesian model of rule induction in Raven's progressive matrices. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Abbott, J. T., Regier, T., & Griffiths, T. L. (2012). Predicting focal colors with a rational model of representativeness. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2012). Constructing a hypothesis space from the Web for large-scale Bayesian word learning. Proceedings of the 34th Annual Conference of the Cognitive Science Society.(pdf)
Canini, K. R., & Griffiths, T. L. (2011). A nonparametric Bayesian model of multi-level category learning. Proceedings of the 25th AAAI Conference on Artificial Intelligence.(pdf)
Austerweil, J. L., & Griffiths, T. L. (2010). Learning invariant features using the Transformed Indian Buffet Process. Advances in Neural Information Processing Systems 23.(pdf)
Xu, J., & Griffiths, T. L. (2010). A rational analysis of the effects of memory biases on serial reproduction. Cognitive Psychology, 60, 107-126. (pdf)
Xu, J., Griffiths, T. L., & Dowman, M. (2010). Replicating color term universals through human iterated learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society.(pdf)
Hsu, A. S., & Griffiths, T. L. (2010). Effects of generative and discriminative learning on use of category variability. Proceedings of the 32nd Annual Conference of the Cognitive Science Society.(pdf)
Austerweil, J. L., & Griffiths, T. L. (2010). Learning hypothesis spaces and dimensions through concept learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society.(pdf)
Canini, K. R., Shashkov, M. M., & Griffiths, T. L. (2010). Modeling transfer learning in human categorization with the hierarchical Dirichlet process. Proceedings of the 27th International Conference on Machine Learning.(pdf)
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116, 752-782. (pdf)
Xu, J., & Griffiths, T. L. (2009). How memory biases affect information transmission: A rational analysis of serial reproduction. Advances in Neural Information Processing Systems 21.(pdf)
Austerweil, J., & Griffiths, T. L. (2009). Analyzing human feature learning as nonparametric Bayesian inference. Advances in Neural Information Processing Systems 21.(pdf)
Austerweil, J. L., & Griffiths, T. L. (2009). The effect of distributional information on feature learning. Proceedings of the 31st Annual Conference of the Cognitive Science Society.(pdf)
Sanborn, A. N., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. Advances in Neural Information Processing Systems, 20.(pdf) (winner of the Outstanding Student Paper prize)
Navarro, D. J., & Griffiths, T. L. (2008). Latent features in similarity judgment: A nonparametric Bayesian approach. Neural Computation, 20, 2597-2628.(pdf)
Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
Goodman, N. D., Tenenbaum, J. B., Griffiths, T. L., & Feldman, J. (2008). Compositionality in rational analysis: Grammar-based induction for concept learning. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
Austerweil, J., & Griffiths, T. L. (2008). A rational analysis of confirmation with deterministic hypotheses. Proceedings of the 30th Annual Conference of the Cognitive Science Society.(pdf)
Shi, L., Feldman, N. H., & Griffiths, T. L. (2008). Performing Bayesian inference with exemplar models. Proceedings of the 30th Annual Conference of the Cognitive Science Society.(pdf)
Navarro, D. J., & Griffiths, T. L. (2007). A nonparametric Bayesian method for inferring features from similarity judgments. Advances in Neural Information Processing Systems 19.(pdf)
Feldman, N. H., & Griffiths, T. L. (2007). A rational account of the perceptual magnet effect. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society.(pdf)
Griffiths, T. L., Christian, B. R., & Kalish, M. L. (2006). Revealing priors on category structures through iterated learning. Proceedings of the 28th Annual Conference of the Cognitive Science Society.(pdf)
Lewandowsky, S., Kalish, M., & Griffiths, T. L. (2000). Competing strategies in categorization: Expediency and resistance to knowledge restructuring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1666-1684. (pdf)