Publications

View By Topic:
All Topics
CI Causal Induction
CD Cognitive Development
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning
E Education
F Foundations
IB Inductive Biases
NBM Nonparametric Bayesian Models
P Perception
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SC Social Cognition
SML Statistical Models of Language

(Click on an author's name to view all papers by that author.)


Filter publications

Similarity and Categorization
IB
S&C
Marinescu, I., McCoy, R. T., & Griffiths, T. L. (2025). Neural networks can capture human concept learning without assuming symbolic representations. (preprint)
S&C
SML
Marjieh, R., Veselovsky, V., Griffiths, T. L., & Sucholutsky, I. (2025). What is a number, that a large language model may know it? (preprint)
S&C
Devraj, A., Griffiths, T. L., & Zhang, Q. (2024). Reconciling categorization and memory via environmental statistics. Psychonomic Bulletin & Review, 31, 2118–2136. (pdf)
PR
S&C
Marinescu, I. R., Thomas McCoy, R. T., & Griffiths, T. (2024). Distilling symbolic priors for concept learning into neural networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
S&C
Marjieh, R., Jacoby, N., Peterson, J. C., & Griffiths, T. L. (2024). The Universal Law of Generalization holds for naturalistic stimuli. Journal of Experimental Psychology: General, 153(3), 573–589. (pdf)
S&C
SML
Marjieh, R., Sucholutsky, I., van Rijn, P., Jacoby, N., & Griffiths, T. L. (2024). Large language models predict human sensory judgments across six modalities. Scientific Reports, 14(1), 21445.(pdf)
IB
S&C
Rane, S., Ho, M., Sucholutsky, I., & Griffiths, T. L. (2024). Concept alignment as a prerequisite for value alignment. 46th Annual Meeting of the Cognitive Science Society. (pdf)
S&C
SC
Sucholutsky, I., Collins, K. M., Malaviya, M., Jacoby, N., Liu, W., Sumers, T. R., Korakakis, M., Bhatt, U., Ho, M., Tenenbaum, J. B., Love, B., Pardos, Z. A., Weller, A., & Griffiths, T. L. (2024). Representational alignment supports effective machine teaching. (preprint)
S&C
Sucholutsky, I., Zhao, B., & Griffiths, T. L. (2024). Using compositionality to learn many categories from few examples. 46th Annual Meeting of the Cognitive Science Society. (pdf)
IB
S&C
Wynn, A. H., Sucholutsky, I., Griffiths, T. L. (2024). Learning human-like representations to enable learning human values. Advances in Neural Information Processing Systems 38. (pdf)
IB
S&C
Zhang, L., Nelson, L., & Griffiths, T. L. (2024). Analyzing the benefits of prototypes for semi-supervised category learning. 46th Annual Meeting of the Cognitive Science Society. (pdf)
IB
S&C
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering mental representations from large language models with Markov chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
P
S&C
Jha, A., Peterson, J. C., & Griffiths, T. L. (2023). Extracting low‐dimensional psychological representations from convolutional neural networks. Cognitive Science, 47(1), e13226. (pdf)
P
S&C
Marjieh, R., Griffiths, T. L., & Jacoby, N. (2023). Musical pitch has multiple psychological geometries. (preprint)
S&C
Marjieh, R., Van Rijn, P., Sucholutsky, I., Sumers, T., Lee, H., Griffiths, T. L., & Jacoby, N. (2023) Words are all you need? Language as an approximation for human similarity judgments. Proceedings of the 11th International Conference on Learning Representations (ICLR). (preprint)
S&C
Sucholutsky, I., Battleday, R., Collins, K., Marjieh, R., Peterson, J. C., Singh, P., Bhatt, U., Jacoby, N., Weller, A., & Griffiths, T. L. (2023). On the informativeness of supervision signals. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence. (pdf)
S&C
Chang, M., Griffiths, T. L., & Levine, S. (2022). Object representations as fixed points: Training iterative refinement algorithms with implicit differentiation. Advances in Neural Information Processing Systems 36. (pdf)
RPM
S&C
Dasgupta, I., & Griffiths, T. L. (2022). Clustering and the efficient use of cognitive resources. Journal of Mathematical Psychology, 109, 102675. (pdf)
S&C
Malaviya, M., Sucholutsky, I., Oktar, K., & Griffiths, T. L. (2022). Can Humans Do Less-Than-One-Shot Learning? Proceedings of the 44th Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Marjieh, R., Sucholutsky, I., Sumers, T. R., Jacoby, N., & Griffiths, T. L. (2022). Predicting Human Similarity Judgments Using Large Language Models. Proceedings of the 44th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., Uddenberg, S., Griffiths, T. L., Todorov, A., & Suchow, J. W. (2022). Deep models of superficial face judgments. Proceedings of the National Academy of Sciences, 119(17), e2115228119. (pdf)
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2021). From convolutional neural networks to models of higher-level cognition (and back again). Annals of the New York Academy of Sciences. (pdf)
RPM
S&C
Devraj, A., Zhang, Q., & Griffiths, T.L. (2021). The dynamics of exemplar and prototype representations depend on environmental statistics. Proceedings of the 43rd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Grewal, K., Peterson, J. C., Thompson, B., & Griffiths, T. L. (2021). Exploring the structure of human adjective representations. SVRHM 2021 Workshop @ NeurIPS. (pdf)
P
S&C
Battleday, R. M., Peterson, J. C., & Griffiths, T. L. (2020). Capturing human categorization of natural images by combining deep networks and cognitive models. Nature Communications, 11(1), 1-14. (pdf)
S&C
Bourgin, D., Abbott, J. T., & Griffiths, T. L. (2021). Recommendation as generalization: Using big data to evaluate cognitive models. Journal of Experimental Psychology: General, 150, 1398–1409. (pdf)
P
S&C
Jha, A., Peterson, J. C., & Griffiths, T. L. (2020). Extracting low-dimensional psychological representations from convolutional neural networks. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Peterson, J. C., Chen, D., & Griffiths, T. L. (2020). Parallelograms revisited: Exploring the limitations of vector space models for simple analogies. Cognition, 205, 104440. (pdf)
P
S&C
Singh, P., Peterson, J. C., Battleday, R. M., & Griffiths, T. L. (2020). End-to-end deep prototype and exemplar models for predicting human behavior. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
S&C
Peterson, J. C., Soulos, P., Nematzadeh, A., & Griffiths, T. L. (2019). Learning to generalize like humans using basic-level object labels. Journal of Vision, 19(10), 60a-60a. (link)
S&C
Austerweil, J. L., Sanborn, S., & Griffiths, T. L. (2019). Learning how to generalize. Cognitive Science, 43(8), e12777. (pdf)
PR
S&C
Hsu, A. S., Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2019). Identifying category representations for complex stimuli using discrete Markov chain Monte Carlo with people. Behavior Research Methods, 51, 1706-1716. (pdf)
P
S&C
Grant, E., Peterson, J. C., & Griffiths, T. (2019). Learning deep taxonomic priors for concept learning from few positive examples. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., Battleday, R., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes classification more robust. Proceedings of the IEEE International Conference on Computer Vision. (pdf)
P
S&C
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the correspondence between deep neural networks and human representations. Cognitive Science, 42, 2648-2669. (pdf)
P
S&C
Suchow, J. W., Peterson, J. C., & Griffiths, T. L. (2018). Learning a face space for experiments on human identity. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Bourgin, D. D., Abbott, J. T., & Griffiths, T. L. (2018). Recommendation as generalization: Evaluating cognitive models in the wild. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Peterson, J. C., Suchow, J. W., Aghi, K., Ku, A. Y., & Griffiths, T. L. (2018). Capturing human category representations by sampling in deep feature spaces. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Peterson, J. C., Soulos, P., Nematzadeh, A., & Griffiths, T. L. (2018). Learning hierarchical visual representations in deep neural networks using hierarchical linguistic labels. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Evaluating vector-space models of analogy. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Peterson, J. C., & Griffiths, T. L. (2017). Evidence for the size principle in semantic and perceptual domains. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Abbott, J. T., Griffiths, T. L., & Regier, T. (2016). Focal colors across languages are representative members of color categories. Proceedings of the National Academy of Sciences, 113(40), 11178-11183. (pdf)
P
S&C
Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2016). Adapting deep network features to capture psychological representations. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf) (Winner of the Computational Modeling Prize in Perception/Action)
E
S&C
Rafferty, A. N., Brunskill, E., Griffiths, T. L., & Shafto, P. (2015). Faster teaching via POMDP planning. Cognitive Science. (pdf)
PR
S&C
Griffiths, T. L. (2015). Revealing ontological commitments by magic. Cognition, 136, 43-48. (pdf)
CEIL
S&C
Canini, K. R., Griffiths, T. L., Vanpaemel, W., & Kalish, M. L. (2014). Revealing human inductive biases for category learning by simulating cultural transmission. Psychonomic Bulletin & Review, 21, 785-793. (pdf)
PR
S&C
Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55-89. (pdf)
S&C
Rafferty, A. N., Zaharia, M., & Griffiths, T. L. (2014). Optimally designing games for behavioural research. Proceedings of the Royal Society Series A, 470. (pdf)
CEIL
S&C
Whalen, A., Maurits, L., Pacer, M., & Griffiths, T. L. (2014). Cultural evolution with sparse testimony: When does the cultural ratchet slip? Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Jia, Y., Abbott, J. T., Austerweil, J. L., Griffiths, T. L., & Darrell, T. (2013). Visual concept learning: Combining machine vision and Bayesian generalization on concept hierarchies. Advances in Neural Information Processing Systems, 26. (pdf)
NBM
S&C
Austerweil, J., & Griffiths, T. L. (2013). A nonparametric Bayesian framework for constructing flexible feature representations. Psychological Review, 120, 817-851. (pdf)
S&C
SML
Feldman, N. H., Myers, E. B., White, K. S., Griffiths, T. L., & Morgan, J. L. (2013). Word-level information influences phonetic learning in adults and infants. Cognition, 127, 427-438. (pdf)
CEIL
S&C
Xu, J., Dowman, M., & Griffiths, T. L. (2013) Cultural transmission results in convergence towards colour term universals. Proceedings of the Royal Society, Series B. (pdf)
S&C
Martin, J. B., Griffiths, T. L., & Sanborn, A. N. (2012). Testing the efficiency of Markov chain Monte Carlo with people using facial affect categories. Cognitive Science, 36, 150-162. (pdf)
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2012). Human feature learning. Encyclopedia of the sciences of learning. N. M. Seel, ed. New York: Springer. (book)
S&C
Griffiths, T. L., & Austerweil, J. L. (2012). Bayesian generalization with circular consequential regions. Journal of Mathematical Psychology, 56, 281-285. (pdf)
CEIL
S&C
Hsu, A. S, Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2012). Identifying representations of categories of discrete items using Markov chain Monte Carlo with People. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Rafferty, A. N., Zaharia, M., & Griffiths, T. L. (2012). Optimally Designing Games for Cognitive Science Research. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Blundell, C., Sanborn, A. N., & Griffiths, T. L. (2012). Look-ahead Monte Carlo with people. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
PR
S&C
Little, D., Lewandowsky, S., & Griffiths, T. L. (2012). A Bayesian model of rule induction in Raven's progressive matrices. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Abbott, J. T., Regier, T., & Griffiths, T. L. (2012). Predicting focal colors with a rational model of representativeness. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Abbott, J. T., Austerweil, J. L., & Griffiths, T. L. (2012). Constructing a hypothesis space from the Web for large-scale Bayesian word learning. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
PR
S&C
Abbott, J. T., Heller, K. A., Ghahramani, Z., & Griffiths, T. L. (2011). Testing a Bayesian measure of representativeness using a large image database. Advances in Neural Information Processing Systems, 24. (pdf)
NBM
S&C
Griffiths, T. L., Sanborn, A. N., Canini, K. R., Navarro, D. J., & Tenenbaum, J. B. (2011). Nonparametric Bayesian models of category learning. In E. M. Pothos & A. J. W.ills (Eds.) Formal approaches in categorization. Cambridge, UK: Cambridge University Press. (book)
E
PR
S&C
Rafferty, A. N., Brunskill, E. B., Griffiths, T. L., & Shafto, P. (2011). Faster teaching by POMDP planning. Proceedings of the 15th International Conference on Artificial Intelligence in Education (AIED2011). (pdf)
NBM
S&C
Canini, K. R., & Griffiths, T. L. (2011). A nonparametric Bayesian model of multi-level category learning. Proceedings of the 25th AAAI Conference on Artificial Intelligence.(pdf)
CEIL
S&C
Canini, K. R., Griffiths, T. L., Vanpaemel, W., & Kalish, M. L. (2011). Discovering inductive biases in categorization through iterated learning. Proceedings of the 33rd Annual Conference of the Cognitive Science Society. (pdf)
NBM
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117 (4), 1144-1167.(pdf)
PR
RPM
S&C
Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17 (4), 443-464. (pdf)
NBM
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2010). Learning invariant features using the Transformed Indian Buffet Process. Advances in Neural Information Processing Systems 23. (pdf)
CEIL
S&C
Xu, J., & Griffiths, T. L. (2010). A rational analysis of the effects of memory biases on serial reproduction. Cognitive Psychology, 60, 107-126. (pdf)
PR
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60, 63-106. (pdf)
CEIL
P
S&C
Xu, J., Griffiths, T. L., & Dowman, M. (2010). Replicating color term universals through human iterated learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
S&C
Hsu, A. S., & Griffiths, T. L. (2010). Effects of generative and discriminative learning on use of category variability. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2010). Learning hypothesis spaces and dimensions through concept learning. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
S&C
Canini, K. R., Shashkov, M. M., & Griffiths, T. L. (2010). Modeling transfer learning in human categorization with the hierarchical Dirichlet process. Proceedings of the 27th International Conference on Machine Learning. (pdf)
P
S&C
SML
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116, 752-782. (pdf)
CI
S&C
Griffiths, T. L., Lucas, C., Williams, J. J., & Kalish, M. L. (2009). Modeling human function learning with Gaussian processes. Advances in Neural Information Processing Systems 21. (pdf)
CEIL
S&C
Xu, J., & Griffiths, T. L. (2009). How memory biases affect information transmission: A rational analysis of serial reproduction. Advances in Neural Information Processing Systems 21. (pdf)
NBM
P
S&C
Austerweil, J., & Griffiths, T. L. (2009). Analyzing human feature learning as nonparametric Bayesian inference. Advances in Neural Information Processing Systems 21. (pdf)
NBM
P
S&C
Austerweil, J. L., & Griffiths, T. L. (2009). The effect of distributional information on feature learning. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)
S&C
Sanborn, A. N., & Griffiths, T. L. (2008). Markov chain Monte Carlo with people. Advances in Neural Information Processing Systems, 20. (pdf) (winner of the Outstanding Student Paper prize)
NBM
S&C
Navarro, D. J., & Griffiths, T. L. (2008). Latent features in similarity judgment: A nonparametric Bayesian approach. Neural Computation, 20, 2597-2628.(pdf)
CEIL
S&C
Griffiths, T. L., Christian, B. R., & Kalish, M. L. (2008). Using category structures to test iterated learning as a method for revealing inductive biases. Cognitive Science, 32, 68-107. (pdf)
S&C
Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32, 108-154. (pdf)
NBM
S&C
Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
S&C
Goodman, N. D., Tenenbaum, J. B., Griffiths, T. L., & Feldman, J. (2008). Compositionality in rational analysis: Grammar-based induction for concept learning. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
PR
S&C
Austerweil, J., & Griffiths, T. L. (2008). A rational analysis of confirmation with deterministic hypotheses. Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pdf)
RPM
S&C
Shi, L., Feldman, N. H., & Griffiths, T. L. (2008). Performing Bayesian inference with exemplar models. Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T. L., & Tenenbaum, J. B. (2007). Parametric embedding for class visualization. Neural Computation, 19, 2536-2556. (pdf)
NBM
S&C
Navarro, D. J., & Griffiths, T. L. (2007). A nonparametric Bayesian method for inferring features from similarity judgments. Advances in Neural Information Processing Systems 19. (pdf)
S&C
Goodman, N. D., Griffiths, T. L., Feldman, J., & Tenenbaum, J. B. (2007). A rational analysis of rule-based concept learning. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
NBM
S&C
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J (2007) Unifying rational models of categorization via the hierarchical Dirichlet process. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
S&C
SML
Feldman, N. H., & Griffiths, T. L. (2007). A rational account of the perceptual magnet effect. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
NBM
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. Proceedings of the 28th Annual Conference of the Cognitive Science Society. (pdf)
CEIL
S&C
Griffiths, T. L., Christian, B. R., & Kalish, M. L. (2006). Revealing priors on category structures through iterated learning. Proceedings of the 28th Annual Conference of the Cognitive Science Society. (pdf)
S&C
Kemp, C. S, Griffiths, T. L., Stromsten, S., & Tenenbaum, J. B. (2004). Semi-supervised learning with trees. Advances in Neural Information Processing Systems 16. (pdf)
S&C
Griffiths, T. L., & Kalish, M. L. (2002). A multidimensional scaling approach to mental multiplication. Memory and Cognition, 30, 97-106. (pdf)
S&C
Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24,629-641. (pdf)
S&C
Tenenbaum, J. B., & Griffiths, T. L. (2001). Some specifics about generalization. Behavioral and Brain Sciences, 24, 772-778. (html)
S&C
Lewandowsky, S., Kalish, M., & Griffiths, T. L. (2000). Competing strategies in categorization: Expediency and resistance to knowledge restructuring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1666-1684. (pdf)

© 2025 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University