Liu, R., Sumers, T. R., Dasgupta, I., & Griffiths, T. L. (2024). How do Large Language Models Navigate Conflicts between Honesty and Helpfulness? Proceedings of the 41st International Conference on Machine Learning (ICML).(pdf)
Meylan, S. C., & Griffiths, T. L. (2024). Word Forms Reflect Trade‐Offs Between Speaker Effort and Robust Listener Recognition. Cognitive Science, 48(7), e13478. (pdf)
Zhu, J. Q., & Griffiths, T. L. (2024). Incoherent Probability Judgments in Large Language Models. 46th Annual Meeting of the Cognitive Science Society.(pdf)
Murthy, S. K., Hawkins, R. D., & Griffiths, T. L. (2022). Shades of confusion: Lexical uncertainty modulates ad hoc coordination in an interactive communication task. Cognition, 225, 105152. (pdf)
Hawkins, R. D., Liu, I., Goldberg, A. E., Griffiths, T. L. (2021). Respect the code: Speakers expect novel conventions to generalize within but not across social group boundaries. Proceedings of the 43rd Annual Conference of the Cognitive Science Society.(pdf)
Meylan, S. C., & Griffiths, T. L. (2021). The Challenges of Large-Scale, Web-Based Language Datasets: Word Length and Predictability Revisited. Cognitive Science, 45(6), e12983. (pdf)
Hawkins, R. D., Goodman, N. D., Goldberg, A. E., & Griffiths, T. L. (2020). Generalizing meanings from partners to populations: Hierarchical inference supports convention formation on networks. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
Peterson, J. C., Chen, D., & Griffiths, T. L. (2020). Parallelograms revisited: Exploring the limitations of vector space models for simple analogies. Cognition, 205, 104440. (pdf)
Peterson, J. C., Soulos, P., Nematzadeh, A., & Griffiths, T. L. (2018). Learning hierarchical visual representations in deep neural networks using hierarchical linguistic labels. Proceedings of the 40th Annual Conference of the Cognitive Science Society.(pdf)
Whalen, A., & Griffiths, T. L. (2017). Adding population structure to models of language evolution by iterated learning. Journal of Mathematical Psychology, 76, 1-6. (pdf)
Grant, E., Nematzadeh, A., & Griffiths, T. L. (2017). How can memory-augmented neural networks pass a false-belief task? Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Nematzadeh, A., Meylan, S. C., & Griffiths, T. L. (2017). Evaluating vector-space models of word representation, or the unreasonable effectiveness of counting words near other words. Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Evaluating vector-space models of analogy. Proceedings of the 39th Annual Conference of the Cognitive Science Society.(pdf)
Meylan, S. C., & Griffiths, T. L. (2015). A Bayesian framework for learning words from multiword utterances. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
Maurits, L., & Griffiths, T. L. (2014). Tracing the roots of syntax with Bayesian phylogenetics. Proceedings of the National Academy of Sciences, 111, 13576-13581. (pdf)
Goldwater, S., Griffiths, T. L., Johnson, M. (2011). Producing power-law distributions and damping word frequencies with two-stage language models. Journal of Machine Learning Research, 12, 2335-2382. (pdf)
Griffiths, T. L. (2011). Rethinking language: How probabilities shape the words we use. Proceedings of the National Academy of Sciences, 108, 3825-3826. (pdf)
Buchsbaum, D., Canini, K. R., & Griffiths, T. L. (2011). Segmenting and recognizing human action using low-level video features. Proceedings of the 33rd Annual Conference of the Cognitive Science Society.(pdf)
Rafferty, A. N., Griffiths, T. L., & Ettlinger, M. (2011) Exploring the relationship between learnability and linguistic universals. Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics at ACL 2011.(pdf)
Blei, D. M., Griffiths, T. L., & Jordan, M. I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57, 1-30.(pdf)
Reali, F., & Griffiths, T. L. (2010). Words as alleles: Connecting language evolution with Bayesian learners to models of genetic drift. Proceedings of the Royal Society, Series B, 277, 429-436. (pdf)
Rafferty, A. N., & Griffiths, T. L. (2010). Optimal language learning: The importance of starting representative. Proceedings of the 32nd Annual Conference of the Cognitive Science Society.(pdf)
Hsu, A., & Griffiths, T. L. (2009). Differential use of implicit negative evidence in generative and discriminative language learning. Advances in Neural Information Processing Systems 22.(pdf)
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116, 752-782. (pdf)
Reali, F., & Griffiths, T. L. (2009). The evolution of linguistic frequency distributions: Relating regularization to inductive biases through iterated learning. Cognition, 111, 317-328. (pdf)
Levy, R., Reali, F., & Griffiths, T. L. (2009). Modeling the effects of memory on human online sentence processing with particle filters. Advances in Neural Information Processing Systems 21.(pdf)
Buchsbaum, D., Griffiths, T. L., Gopnik, A., & Baldwin, D. (2009). Learning from actions and their consequences: Inferring causal variables from continuous sequences of human action. Proceedings of the 31st Annual Conference of the Cognitive Science Society.(pdf)
Bouchard-Cote, A., Griffiths, T. L., & Klein, D. (2009). Improved reconstruction of protolanguage word forms. Proceedings of the North American Conference on Computational Linguistics (NAACL'09).(pdf)
Steyvers, M., & Griffiths, T. L. (2008). Rational analysis as a link between human memory and information retrieval. In M. Oaksford and N. Chater (Eds.). The probabilistic mind: Prospects for rational models of cognition. Oxford: Oxford University Press. (pdf)
Reali, F., & Griffiths, T. L. (2008). The evolution of frequency distributions: Relating regularization to inductive biases through iterated learning. Proceedings of the 30th Annual Conference of the Cognitive Science Society.(pdf)
Johnson, M., Griffiths, T. L., & Goldwater, S (2007). Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models. Advances in Neural Information Processing Systems 19.(pdf)
Goldwater, S., Griffiths, T. L., & Johnson, M. (2007). Distributional cues to word segmentation: Context is important. Proceedings of the 31st Boston University Conference on Language Development.(pdf)
Bouchard, A., Liang, P., Griffiths, T., & Klein, D. (2007). A probabilistic approach to diachronic phonology. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).(pdf)
Feldman, N. H., & Griffiths, T. L. (2007). A rational account of the perceptual magnet effect. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society.(pdf)
Goldwater, S., & Griffiths, T. L. (2007). A fully Bayesian approach to unsupervised part-of-speech tagging. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL'07).(pdf)
Johnson, M., Griffiths, T. L., & Goldwater, S. (2007). Bayesian inference for PCFGs via Markov chain Monte Carlo. Proceedings of the North American Conference on Computational Linguistics (NAACL'07).(pdf)
Goldwater, S., Griffiths, T. L., & Johnson, M. (2006). Interpolating between types and tokens by estimating power law generators. Advances in Neural Information Processing Systems 18. (pdf) (note: this version of the paper is slightly modified from the hardcopy proceedings)
Purver, M., Kording, K. P., Griffiths, T. L., & Tenenbaum, J. B. (2006). Unsupervised topic modelling for multi-party spoken discourse. Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics.(pdf)
Goldwater, S., Griffiths, T. L., & Johnson, M. (2006). Contextual dependencies in unsupervised word segmentation. Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics.(pdf)
Griffiths, T. L., & Tenenbaum, J. B. (2002). Using vocabulary knowledge in Bayesian multinomial estimation. Advances in Neural Information Processing Systems, 14. (pdf)