Publications

View By Topic:
All Topics
F Foundations
P Perception
E Education
CI Causal Induction
CD Cognitive Development
PR Probabilistic Reasoning
RPM Rational Process Models
S&C Similarity and Categorization
SML Statistical Models of Language
NBM Nonparametric Bayesian Models
CEIL Cultural Evolution and Iterated Learning
DMRL Decision Making and Reinforcement Learning

(Click on an author's name to view all papers by that author.)


Filter publications

Probabilistic Reasoning
PR
S&C
Marinescu, I. R., Thomas McCoy, R. T., & Griffiths, T. (2024). Distilling Symbolic Priors for Concept Learning into Neural Networks. 46th Annual Meeting of the Cognitive Science Society. (pdf)
PR
Oktar, K., Sumers, T., & Griffiths, T. L. (2024). A Rational Model of Vigilance in Motivated Communication. 46th Annual Meeting of the Cognitive Science Society. (pdf)
PR
SML
Zhu, J.-Q., & Griffiths, T. L. (2024). Incoherent Probability Judgments in Large Language Models. 46th Annual Meeting of the Cognitive Science Society. (pdf)
PR
S&C
Zhu, J. Q., Yan, H., & Griffiths, T. (2024). Recovering Mental Representations from Large Language Models with Markov Chain Monte Carlo. 46th Annual Meeting of the Cognitive Science Society. (pdf)
PR
NBM
Li, M. Y., Callaway, F., Thompson, W. D., Adams, R., & Griffiths, T. L. (2023). Learning to learn functions. Cognitive Science, 47(4), e13262. (pdf)
PR
NBM
Li, M. Y., Grant, E., & Griffiths, T. L. (2023). Gaussian process surrogate models for neural networks. Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence. (pdf)
PR
Lu, Q., Nguyen, T. T., Hasson, U., Griffiths, T. L., Zacks, J. M., Gershman, S. J., & Norman, K. A. (2023). Toward a more neurally plausible neural network model of latent cause inference. Computational Cognitive Neuroscience Conference 2023. (pdf)
PR
SML
McCoy, R. T., Yao, S., Friedman, D., Hardy, M., & Griffiths, T. L. (2023). Embers of autoregression: Understanding large language models through the problem they are trained to solve. (preprint)
P
PR
Sucholutsky, I., & Griffiths, T. L. (2023). Alignment with human representations supports robust few-shot learning. Advances in Neural Information Processing Systems, 37. (pdf)
PR
Wang, Z., Ku, A., Baldridge, J., Griffiths, T. L., & Kim, B. (2023). Gaussian Process Probes (GPP) for uncertainty-aware probing. Advances in Neural Information Processing Systems, 37. (pdf)
E
PR
Dubey, R., Griffiths, T. L., & Lombrozo, T. (2022). If it’s important, then I’m curious: Increasing perceived usefulness stimulates curiosity. Cognition, 226, 105193. (pdf)
PR
SML
Barnett, S. A., Griffiths, T. L., Hawkins, R. D. (2022). A pragmatic account of the weak evidence effect. Open Mind, 6, 169-182. (pdf)
PR
DMRL
Gates, V., Callaway, F., Ho, M. K., Griffiths, T. (2021). A rational model of people's inferences about others' preferences based on response times. Cognition, 217, 104885. (pdf)
PR
SML
Hawkins, R. D., Liu, I., Goldberg, A. E., Griffiths, T. L. (2021). Respect the code: Speakers expect novel conventions to generalize within but not across social group boundaries. Proceedings of the 43rd Annual Conference of the Cognitive Science Society. (pdf)
PR
Jansen, R. A., Rafferty, A. N., & Griffiths, T.L. (2021) A rational model of the Dunning–Kruger effect supports insensitivity to evidence in low performers. Nature Human Behavior. (pdf)
PR
CEIL
Krafft, P. M., Shmueli, E., Griffiths, T. L., & Tenenbaum, J. B. (2021). Bayesian collective learning emerges from heuristic social learning. Cognition, 212, 104469. (pdf)
PR
RPM
Wilson, S., Arora, S., Zhang, Q., & Griffiths, T.L. (2021). A rational account of anchor effects in hindsight bias. Proceedings of the 43th Annual Conference of the Cognitive Science Society. (pdf)
PR
NBM
Battleday, R. M., & Griffiths, T. L. (2020). Analogy as nonparametric Bayesian inference over relational systems. (preprint)
E
PR
Dubey, R., & Griffths, T.L. (2020). Understanding exploration in humans and machines by formalizing the function of curiosity. Current Opinion in Behavioral Sciences, 35, 118-124. (pdf)
E
PR
Jansen, R. A., Rafferty, A. N., & Griffiths, T. L. (2020). A rational model of sequential self-assessment. Proceedings of the 42nd Annual Conference of the Cognitive Science Society. (pdf)
PR
DMRL
Hardy, M., & Griffiths, T. L. (2019). Demonstrating the impact of prior knowledge in risky choice. (preprint)
PR
NBM
Jerfel, G., Grant, E. L., Griffiths, T. L., & Heller, K. (2019). Reconciling meta-learning and continual learning with online mixtures of tasks. Advances in Neural Information Processing Systems, 32. (pdf)
PR
S&C
Hsu, A. S., Martin, J. B., Sanborn, A. N., & Griffiths, T. L. (2019). Identifying category representations for complex stimuli using discrete Markov chain Monte Carlo with people. Behavior Research Methods, 51, 1706-1716. (pdf)
PR
DMRL
Ho, M. K., Korman, J., & Griffiths, T. L. (2019). The computational structure of unintentional meaning. Proceedings of the 41st Annual Conference of the Cognitive Science Society. (pdf)
PR
Griffiths, T. L., Daniels, D., Austerweil, J. L., & Tenenbaum, J. B. (2018). Subjective randomness as statistical inference. Cognitive Psychology, 103, 85-109. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). Empirical evidence for resource-rational anchoring and adjustment. Psychonomic Bulletin & Review, 25, 775-784. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., Huys, Q. J. M., & Goodman, N. D. (2018). The anchoring bias reflects rational use of cognitive resources. Psychonomic Bulletin & Review, 25, 322-349. (pdf)
PR
RPM
DMRL
Lieder, F., Griffiths, T. L., & Hsu, M (2018). Over-representation of extreme events in decision making reflects rational use of cognitive resources. Psychological Review, 125(1), 1-32. (pdf)
PR
Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. L. (2018). Recasting gradient-based meta-learning as hierarchical Bayes. In Proceedings of the 6th International Conference on Learning Representations (ICLR). (pdf)
PR
SML
Gates, M. A., Veuthey, T. L., Tessler, M. H., Smith, K. A., Gerstenberg, T., Bayet, L., & Tenenbaum, J. B. (2018). Tiptoeing around it: Inference from absence in potentially offensive speech. Proceedings of the 40th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
DMRL
Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational metareasoning. Psychological Review, 124(6), 762-794. (pdf)
PR
DMRL
Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-Menell, D., Palaniappan, M., Malik, D., Sastry, S. S., Griffiths, T. L., & Dragan, A. D. (2017). Pragmatic-Pedagogic Value Alignment. International Symposium on Robotics Research. (pdf)
PR
Meng, Y., Griffiths, T. L., & Xu, F. (2017). Inferring intentional agents from violation of randomness. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
E
PR
Dubey, R., & Griffiths, T. L. (2017). A rational analysis of curiosity. Proceedings of the 39th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Milli, S., Lieder, F., & Griffiths, T. L. (2017) When does bounded-optimal metareasoning favor few cognitive systems? Proceedings of the 31st AAAI Conference on Artificial Intelligence. (pdf)
P
CI
PR
Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., Tenenbaum, J. B. (2016). Inferring mass in complex scenes by mental simulation. Cognition, 157, 61-76. (pdf)
CD
PR
Ruggeri, A., Lombrozo, T., Griffiths, T. L., & Xu, F. (2016). Sources of developmental change in the efficiency of information search. Developmental Psychology, 52, 2159-2173. (pdf)
PR
SML
Hsu, A., & Griffiths, T. L. (2016). Sampling assumptions affect use of indirect negative evidence in language learning PLOS One, 11(6). (pdf)
CD
PR
Eaves Jr, B. S., Feldman, N. H., Griffiths, T. L., & Shafto, P. (2016). Infant-directed speech is consistent with teaching. Psychological Review (pdf)
PR
Fisac, J. F., Liu, C., Hamrick, J. B., Sastry, S., Hedrick, J. K., Griffiths, T. L., & Dragan, A. D. (2016). Generating plans that predict themselves. In Proceedings of the 12th International Workshop on the Algorithmic Foundations of Robotics (WAFR 2016). (pdf)
PR
O'Grady, S., Griffiths, T. L., & Xu, F. (2016). Do simple probability judgements rely on integer approximation? Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Suchow, J. W., & Griffiths, T. L. (2016). Deciding to remember: Memory maintenance as a Markov Decision Process. Proceedings of the 38th Annual Conference of the Cognitive Science Society. (pdf)
P
PR
Liu, C., Hamrick, J. B., Fisac, J. F., Dragan, A. D, Hendrick, J. K., Sastry, S. S, & Griffiths, T. L. (2016). Goal inference improves objective and perceived performance in human-robot collaboration. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. (pdf)
CD
PR
Hu, J., Lucas, C. G., Griffiths, T. L., & Xu, F. (2015). Preschoolers' understanding of graded preferences. Cognitive Development, 36, 93-102. (pdf)
PR
Rafferty, A. N., LaMar, M. M., & Griffiths, T. L. (2015). Inferring learners' knowledge from their actions. Cognitive Science, 39, 584-618. (pdf)
PR
S&C
Griffiths, T. L. (2015). Revealing ontological commitments by magic. Cognition, 136, 43-48. (pdf)
PR
RPM
Lieder, F., & Griffiths, T. L. (2015). When to use which heuristic: A rational solution to the strategy selection problem. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
CD
PR
Lieder, F., Sim, Z., Hu, J. C., & Griffiths, T. L. (2015). Children and adults differ in their strategies for social learning. Proceedings of the 37th Annual Conference of the Cognitive Science Society. (pdf)
CI
CD
PR
Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014). Probabilistic models, learning algorithms, and response variability: Sampling in cognitive development. Trends in Cognitive Sciences, 18, 497-500. (pdf)
PR
RPM
Vul, E., Goodman, N. D., Tenenbaum, J. B., & Griffiths, T. L. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38, 599-637. (pdf)
CD
PR
Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A., Kushnir, T., Markson, L., & Hu, J. (2014). The child as econometrician: A rational model of preference understanding in children. PLOS One, 9(3), e92160. (pdf)
PR
S&C
Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55-89. (pdf)
PR
Bertolero, M. A., & Griffiths, T. L. (2014). Is holism a problem for inductive inference? A computational analysis. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Hamrick, J. B., & Griffiths, T. L. (2014). What to simulate? Inferring the right direction for mental rotation. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Lieder, F., Hsu, M., & Griffiths, T. L. (2014). The high availability of extreme events serves resource-rational decision-making. Proceedings of the 36th Annual Conference of the Cognitive Science Society. (pdf)
PR
Williams, J. J., & Griffiths, T. L. (2013). Why are people bad at detecting randomness? A statistical argument. Journal of Experimental Psychology: Learning, Memory & Cognition, 39, 1473-1490. (pdf)
PR
Schlerf, J., Xu, J., Klemfuss, N., Griffiths, T. L., & Ivry, R. B. (2013). Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors. Journal of Neurophysiology, 109, 1164-1173. (pdf)
PR
RPM
Abbott, J. T., Hamrick, J. B., & Griffiths, T. L. (2013). Approximating Bayesian inference with a sparse distributed memory system. Proceedings of the 35th Annual Conference of the Cognitive Science Society. (pdf)
PR
CEIL
Whalen, A., Buchsbaum, D., & Griffiths, T. L. (2013). How do you know that? Sensitivity to statistical dependency in social learning. Proceedings of the 35th Annual Conference of the Cognitive Science Society. (pdf)
CI
PR
Pacer, M., Williams, J., Xi, C., Lombrozo, T., & Griffiths, T. L. (2013). Evaluating computational models of explanation using human judgments. Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence. (pdf)
PR
RPM
Lieder, F., Griffiths, T. L., & Goodman, N. D. (2012). Burn-in, bias, and the rationality of anchoring. Advances in Neural Information Processing Systems, 25. (pdf)
PR
S&C
Little, D., Lewandowsky, S., & Griffiths, T. L. (2012). A Bayesian model of rule induction in Raven's progressive matrices. Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pdf)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: General, 140, 725-743. (pdf)
PR
S&C
Abbott, J. T., Heller, K. A., Ghahramani, Z., & Griffiths, T. L. (2011). Testing a Bayesian measure of representativeness using a large image database. Advances in Neural Information Processing Systems, 24. (pdf)
PR
Austerweil, J. L., & Griffiths, T. L. (2011). Seeking confirmation is rational for deterministic hypotheses. Cognitive Science, 35, 499-526. (pdf)
E
PR
S&C
Rafferty, A. N., Brunskill, E. B., Griffiths, T. L., & Shafto, P. (2011). Faster teaching by POMDP planning. Proceedings of the 15th International Conference on Artificial Intelligence in Education (AIED2011). (pdf)
PR
Waisman, A. S., Lucas, C. G., Griffiths, T. L., & Jacobs, L. F. (2011). A Bayesian model of navigation in squirrels. Proceedings of the 33rd Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
S&C
Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17 (4), 443-464. (pdf)
PR
Hsu, A., Griffiths, T. L., & Schreiber, E. (2010). Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review, 17, 624-629. (pdf)
PR
RPM
S&C
Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. (2010). Uncovering mental representations with Markov chain Monte Carlo. Cognitive Psychology, 60, 63-106. (pdf)
CI
PR
RPM
Bonawitz, E. B., & Griffiths, T. L. (2010). Deconfounding hypothesis generation and evaluation in Bayesian models. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
CI
PR
RPM
Denison, S., Bonawitz, E. B., Gopnik, A., & Griffiths, T. L. (2010). Preschoolers sample from probability distributions. Proceedings of the 32nd Annual Conference of the Cognitive Science Society. (pdf)
PR
RPM
Shi, L., & Griffiths, T. L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. Advances in Neural Information Processing Systems 22. (pdf)
PR
CEIL
Lewandowsky, S., Griffiths, T. L., & Kalish, M. L. (2009). The wisdom of individuals: Exploring peoples knowledge about everyday events using iterated learning. Cognitive Science, 33, 969-998. (pdf)
CD
PR
Lucas, C., Griffiths, T. L., Xu, F., & Fawcett, C. (2009). A rational model of preference learning and choice prediction by children. Advances in Neural Information Processing Systems 21. (pdf)
PR
RPM
Vul, E., Goodman, N. D., Griffiths, T. L., & Tenenbaum, J. B. (2009). One and done? Optimal decisions from very few samples. Proceedings of the 31st Annual Conference of the Cognitive Science Society. (pdf)
PR
S&C
Austerweil, J., & Griffiths, T. L. (2008). A rational analysis of confirmation with deterministic hypotheses. Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pdf)
PR
Williams, J. J., & Griffiths, T. L. (2008). Why are people bad at detecting randomness? Because it is hard. Proceedings of the 30th Annual Conference of the Cognitive Science Society. (pdf)
CI
PR
Griffiths, T. L., & Tenenbaum, J. B. (2007). From mere coincidences to meaningful discoveries. Cognition, 103, 180-226. (pdf)
PR
Schreiber, E., & Griffiths, T. L. (2007) Subjective randomness and natural scene statistics. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. (pdf)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science, 17, 767-773. (pdf) (article in The Economist)
F
PR
Griffiths, T. L., & Tenenbaum, J. B. (2006). Statistics and the Bayesian mind. Significance, 3, 130-133. (pdf)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2004). From algorithmic to subjective randomness. Advances in Neural Information Processing Systems 16. (pdf) (winner of the Best Student Paper prize)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2003). Probability, algorithmic complexity, and subjective randomness. Proceedings of the 25th Annual Conference of the Cognitive Science Society. (pdf)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2001). Randomness and coincidences: Reconciling intuition and probability theory. Proceedings of the 23rd Annual Conference of the Cognitive Science Society. (pdf)
PR
Tenenbaum, J. B., & Griffiths, T. L. (2001). The rational basis of representativeness. Proceedings of the 23rd Annual Conference of the Cognitive Science Society. (pdf)
PR
Griffiths, T. L., & Tenenbaum, J. B. (2000). Teacakes, trains, toxins, and taxicabs: A Bayesian account of predicting the future. Proceedings of the 22nd Annual Conference of the Cognitive Science Society. (pdf)

© 2024 Computational Cognitive Science Lab  |  Department of Psychology  |  Princeton University